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Background: Emerging evidence suggests that endothelial-to-mesenchymal transition (EndMT) in
endothelial dysfunction due to persistent inflammation is a key component and emerging concept in the
pathogenesis of vascular diseases. Ginsenoside Rg3 (Rg3), an active compound from red ginseng, has
been known to be important for vascular homeostasis. However, the effect of Rg3 on inflammation-
induced EndMT has never been reported. Here, we hypothesize that Rg3 might reverse the
inflammation-induced EndMT and serve as a novel therapeutic strategy for vascular diseases.
Methods: EndMT was examined under an inflammatory condition mediated by the NOD1 agonist, g-d-
glutamyl-meso-diaminopimelic acid (iE-DAP), treatment in human umbilical vein endothelial cells. The
expression of EndMT markers was determined by Western blot analysis, real-time polymerase chain
reaction, and immunocytochemistry. The underlying mechanisms of Rg3-mediated EndMT regulation
were investigated by modulating the microRNA expression.
Results: The NOD1 agonist, iE-DAP, led to a fibroblast-like morphology change with a decrease in the
expression of endothelial markers and an increase in the expression of the mesenchymal marker, namely
EndMT. On the other hand, Rg3 markedly attenuated the iE-DAPeinduced EndMT and preserved the
endothelial phenotype. Mechanically, miR-139 was downregulated in cells with iE-DAPeinduced EndMT
and partly reversed in response to Rg3 via the regulation of NF-kB signaling, suggesting that the Rg3
emiR-139-5p-NF-kB axis is a key mediator in iE-DAP-induced EndMT.
Conclusion: These results suggest, for the first time, that Rg3 can be used to inhibit inflammation-
induced EndMT and may be a novel therapeutic option against EndMT-associated vascular diseases.
� 2019 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Endothelial cells (ECs) line the inner surface of the blood vessels
and play a key role in maintaining homeostasis of the vascular
system during exposure to various stimuli [1e3]. However, ECs can
be dysfunctional under sustained pathological conditions, such as
chronic inflammation, hypertension, obesity, and diabetes [4,5], and
this endothelial dysfunction can lead to endothelial-to-
mesenchymal transition (EndMT), which is a newly recognized,
key feature in the pathogenesis of a variety of diseases including,
fibrosis [6], tumor progression [7], and pulmonary arterial hyper-
tension (PAH) [8]. The features of EndMT are similar to those of the
well-established epithelial-to-mesenchymal transition (EMT) [9].
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EndMT is a process of losing endothelial markers such as platelet
and endothelial cell adhesion molecule 1 (PECAM1/CD31) and
vascular endothelial (VE)ecadherin and acquiring mesenchymal
markers such as alpha-smoothmuscle actin, smoothmuscle protein
22 alpha (SM22a), vimentin, type I collagen, fibronectin, fibroblast-
specific protein 1, andN-cadherin [1,10e12]. The EndMTprocess can
be regulated by various pathological stimuli, microRNAs (miRNAs),
and many signaling pathways [1,3]. In particular, miRNAs are
emerging as keymediators during the EndMTprocess because of the
capacity to regulate multiple mRNAs and have an advantage in the
regulation of phenotypic plasticity in ECs. However, the underlying
mechanism of the EndMT process and how EndMT contributes to
the progression of a variety of diseases are less well understood.
, 52 Hyochangwon-gil, Yongsan-gu, Seoul, 140-742, South Korea.
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Nucleotide-binding oligomerization domainelike receptors
(NLRs) are members of the intracellular innate immune receptor
family [13,14]. NLRs sense pathogens and play a key role in the host
defense mechanism [13,14]. Nucleotide-binding oligomerization
domain-containing proteins 1 and 2 (NOD1 andNOD2),members of
the NLR family, are involved in inflammatory cytokine production
and several diseases such as cardiac fibrosis and Crohn’s disease
[13e16]. NOD1 recognizesg-d-glutamyl-meso-diaminopimelic acid
(iE-DAP), and its activation triggers nuclear factor-kB (NF-kB)
signaling [15,17]. To date,most studies onNOD1have focused on the
role of immune cells. However, a recent study showed the important
role of NOD1 in ECs in which activation of NOD1 can lead to endo-
thelial dysfunction, and in turn, contribute to pathological angio-
genesis [18]. In addition, several studies have shown that various
bacterial endotoxins and viruses promote endothelial dysfunction
and EndMT, implying the strong involvement of NOD1 in these re-
sponses [19e23]. Furthermore, whether activation of NOD1 con-
tributes to EndMT has not been studied.

Ginsenoside Rg3 (Rg3), a steroidal saponin extracted from
ginseng, has various pharmacological effects [24]. It has been well
studied for its antitumor effect, which induces tumor cell apoptosis
and inhibits viability, migration, metastasis, and proliferation of
tumor cells [24e28]. It also has suppressive effects on tumor
angiogenesis by inhibiting the proliferation of tumor ECs [29,30].
Various studies have shown that Rg3 inhibits the inflammatory
response induced by proinflammatory mediators such as lipo-
polysaccharide (LPS) and IL-1b and ischemia/reperfusion [31e35].
A recent study demonstrated that 20(R)-Rg3 plays a liver protective
role inmice by suppressing inflammationmediated by the PI3K/Akt
pathway [36]. Rg3 can also regulate vascular tone. Previous studies
have shown that Rg3-enriched Korean Red Ginseng stabilized
blood pressure in hypertensive rats and that Rg3 modulated
vascular contraction through endothelial nitric oxide production
[37e39]. Although the protective effects of Rg3 under the condi-
tions of an inflammatory response have been shown, whether the
role of Rg3 is beneficial in EndMT induced by proinflammatory
conditions such as NOD1 activation is not known.

Therefore, in this study, we sought to define the role of Rg3 in the
NOD1-mediated EndMT process and its underlying mechanism
mediated bymiRNA.Here,weprovideevidence fora beneficial role of
Rg3 in inflammation-induced EndMTand define a novel mechanism
by which Rg3-mediated inhibition of EndMT is regulated via the
suppression of AKT/NF-kB signaling by miR-139-5p upregulation.

2. Methods

2.1. Cell culture and transfection

Human umbilical vein endothelial cells (HUVECs; Lonza, Basel,
Switzerland and Yale VBT Core, New Haven, USA) were cultured at
37�C in a 5% CO2 incubatorwith EBM-2 basalmedium supplemented
with EGM-2 (Lonza) and 1% penicillinestreptomycin (Welgene,
Daegu, Korea). For experimental treatments, HUVECs (passages 3e7)
were grown to 70% to 90% confluence. HEK293T cells were cultured
in Dulbecco’s modified Eagle’s medium (Hyclone, Logan, USA) sup-
plemented with 10% fetal bovine serum (Gibco, Grand Island, USA)
and 1% penicillinestreptomycin (Welgene). siRNA (Stealth siRNA;
Invitrogen, Grand Island, USA) and miRNA mimics (miRVanaTM;
Ambion, MA, USA) were transfected with Lipofectamine RNAiMAX
(Invitrogen) as per the manufacturer’s instructions.

2.2. Reagents

Rg3 was purchased from (Sigma, St. Louis, USA) and dissolved in
dimethyl sulfoxide. Ginsenoside Rb1 was obtained from the Korea
Please cite this article as: Lee A et al., Ginsenoside Rg3 protects agains
mesenchymal transition by regulating the miR-139-5peNF-kB axis, Journ
Ginseng and Tobacco Research Institute (Daejeon, Korea) and dis-
solved in 100% ethanol. ML130 was purchased from Selleckchem
(Houston, USA) and iE-DAP was purchased from InvivoGen (San
Diego, USA). Rg3, Rb1, iE-DAP, and ML130 were used at the indi-
cated doses and time points.

2.3. Real-time polymerase chain reaction

Total RNA was isolated with an miRNeasy RNA isolation kit
(Qiagen, Hilden, Germany). Purified RNA was reverse transcribed
using the TaqMan MicroRNA Reverse Transcription Kit (Life Tech-
nologies, Carlsbad, USA). miRNA quantitative reverse transcriptase
polymerase chain reaction was performed with the TaqMan Uni-
versal Master Mix II, no UNG (Life Technologies), and miR-139-5p
was detected with Taqman probes. Data were normalized to
those of the internal control small RNA RNU6B. For the mRNA,
purified RNA was reverse transcribed using the qPCRBIO cDNA
Synthesis Kit (PCR Biosystems, London, UK). Quantitative reverse
transcriptase polymerase chain reaction was performed with the
qPCRBIO SyGreen Blue Mix Lo-ROX (PCR Biosystems) as per the
manufacturer’s instructions. Ribosomal 18S RNA was used as the
internal control.

2.4. Western blotting

HUVECs Qwere lysed with RIPA buffer (GenDEPOT, Barker, TX,
USA) containing a protease and phosphatase inhibitor cocktail
(Roche Diagnostics, Risch-Rotkreuz, Switzerland). Thereafter,
centrifugation was performed at 13,000 rpm and 4�C for 15 min.
Protein concentrations were determined using the Pierce BCA pro-
tein assay kit (Thermo Fisher Scientific, Waltham, USA). Equal
amounts of total proteins were separated by sodium dodecyl
sulfateepolyacrylamide gel electrophoresis and transferred onto
polyvinyl difluoride membranes (Millipore, Burlington, USA).
Immunoblottingwas performedwith primary antibodies specific to
CD31 (1:2000, Cell Signaling, Danvers, USA), VE-cadherin (1:2000,
Santa Cruz, Dallas, USA), fibronectin (1:3000, Santa Cruz), N-cad-
herin (1:3000, BD Biosciences, Franklin Lakes, USA), SM22a
(1:3000, Abcam, Cambridge, UK), NF-kB p65 (1:3000, Cell
Signaling), lamin B1 (1:2000, Santa Cruz), IkBa (1:2000, Cell
Signaling), p IkBa (1:2000, Cell Signaling), importin-a3 (1:3000,
Abcam), TAK1 (1:2000, Cell Signaling), Akt (1:2000, Cell Signaling),
phosphoAkt (ser-473) (1:2000, Cell Signaling), and GAPDH (1:5000,
Cell Signaling). Immunodetection Qwas accomplished using HRP-
conjugated mouse (1:4000, Thermo Fisher Scientific) and rabbit
(1:4000, Cell Signaling) secondary antibodies. The enhanced
chemiluminescence detection method was used for development
(Thermo Fisher Scientific). Nuclear and cytoplasmic extractions
were performed with the EpiQuik Nuclear Extraction Kit I (Epi-
Gentek, Farmingdale, USA).

2.6. Immunofluorescence

HUVECs Qwere fixed with 4% paraformaldehyde for 5 min and
washed with PBS. Triton X-100 (0.1%) was used for permeabiliza-
tion for 5 min (permeabilization was not performed for VE-
cadherin staining). After Qblocking with 1% BSA for 1 h, the pri-
mary antibodies were applied overnight at 4�C. Rhodamine phal-
loidin (1:1000, Sigma), VE-cadherin (1:300, Cell Signaling),
fibronectin (1:100, Santa Cruz), N-cadherin (1:200, BD Biosciences),
SM22a (1:500, Abcam), and NF-kB p65 (1:400, Cell Signaling) were
used. The secondary antibodies were donkey antigoat Alexa Fluor
488, donkey antimouse Alexa Fluor 568, and goat antirabbit Alexa
Fluor 647. Immunostaining images were obtained using a confocal
microscope (Zeiss LSM-700, Carl Zeiss, Oberkochen, Germany).
t g-d-glutamyl-meso-diaminopimelic acideinduced endothelial-to-
al of Ginseng Research, https://doi.org/10.1016/j.jgr.2019.01.003
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Fig. 1. iE-DAP induces EndMT in HUVECs. (A) Rhodamineephalloidin staining images of HUVECs treated with iE-DAP (20 mg/mL) in 2% FBS medium for 2 d. Scale bar ¼ 50 mm. (B)
mRNA expression of mesenchymal markers, fibronectin (FN), N-cadherin (N-Cad), and smooth muscle protein 22 alpha (SM22a) in response to iE-DAP treatment (20 mg/mL) for 2, 4,
and 6 d. (C) Protein expression of endothelial and mesenchymal markers after iE-DAP treatment for 2, 4, and 6 d. VE-cadherin (VE-Cad), FN, N-Cad, and SM22a. (D) Protein
expression of endothelial markers and mesenchymal markers induced by iE-DAP (20 mg/mL) changes with or without pretreatment with ML130. *P < 0.05, **P < 0.01, and
***P < 0.001 compared with the controls as determined by the unpaired two-tailed Student t test. Error bars, s.e.m. N ¼ 3 experiments per condition.
EndMT, endothelial-to-mesenchymal transition; FBS, fetal bovine serum; HUVEC, human umbilical vein endothelial cell; iE-DAP, g-d-glutamyl-meso-diaminopimelic acid; s.e.m.,
standard error of the mean; VE, vascular endothelial.
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2.7. Lentivirus production

For miR-139-5p overexpression in HUVECs, a lentivirus bearing
miR-139-5p was obtained from System Biosciences. The Lenti-X
HTX packaging system (Clontech, Mountain View, USA) with
Lenti-X concentrator was used to generate the lentivirus particles
for in vitro cellular transduction.

2.8. Cell viability assay

Cell viability was measured using the WST-1 assay kit (Daeil
LabService, Seoul, Korea) as per the manufacturer’s instructions.
HUVECs (5 � 103 cells per well) were plated to a 96-well plate and
treated with various concentrations of Rg3 or Rb1 for 24 hr, fol-
lowed by 1 hr incubation with WST-1 at 37�C and 5% CO2. The
absorbance was measured at 450 nm using an ELISA plate reader
(Bio-Rad, Model 550). The cell viability was calculated as relative
absorbance compared with the control.

2.9. Statistical analysis

All experiments were performed at least three times, and ana-
lyses were performed with GraphPad Prism 5.0 software. When
two groups were compared, statistical differences were assessed
with unpaired two-tailed Student t test. A p value < 0.05 was
considered statistically significant.

3. Results

3.1. iE-DAP induces EndMT in HUVECs

To identify whether NOD1 activation can induce EndMT, we first
examined the effect of iE-DAP (a NOD1 ligand) on the EndMT
process. Because filamentous actin is a characteristic of EndMT
Please cite this article as: Lee A et al., Ginsenoside Rg3 protects agains
mesenchymal transition by regulating the miR-139-5peNF-kB axis, Journ
[40,41], we analyzed morphology change and cytoskeleton reor-
ganization by rhodamineephalloidin staining. We found that
treatment with iE-DAP (20 mg/mL) led to a fibroblast-like cell
morphology and actin stress fiber development in HUVECs (Fig.1A).
We then investigated the mRNA and protein expression of EndMT
markers on the 2nd, 4th, and 6th d after iE-DAP treatment. We found
that iE-DAP significantly increased the mRNA levels of mesen-
chymal markers, fibronectin, N-cadherin, and SM22a (Fig. 1B).
Western blotting showed that fibronectin, N-cadherin, and SM22a
protein expression markedly increased in iE-DAPetreated ECs
whereas that of the endothelial markers, CD31 and VE-cadherin,
significantly decreased (Fig. 1C). These data indicate that NOD1
activation by iE-DAP contributes to EndMT. On the basis of these
findings, we investigated whether inhibition of NOD1 activity
suppresses EndMT. We found that pretreatment with a NOD1 in-
hibitor (ML130, 10 mM) for 2 h reversed the iE-DAPeinduced
expression of EndMTmarkers (Fig.1D). Thus, we demonstrated that
NOD1 activation by iE-DAP leads to EndMT in HUVECs.

3.2. Rg3 ameliorates iE-DAPeinduced EndMT in HUVECs

Previous studies have shown that Rg3 and Rb1 protect vascular
ECs [38,39,42]. The specific roles of Rg3 and Rb1 in EndMT remain
unclear. Before examining the effect of Rg3 and Rb1 on the EndMT
process, the effect of Rg3 and Rb1 on HUVEC viability was exam-
ined. We found that Rg3 (0.4, 0.8, 4, 8, and 16 mg/mL) and Rb1
treatment (0.1, 0.5, 1, 5.5, and 11 mg/mL) did not affect the viability
of HUVECs, whereas 22 mg/mL of Rb1 significantly decreased the
viability of HUVECs (Supplementary Fig. 1A and 1B). Therefore, we
selected 10 mg/mL of Rg3 and Rb1 for the subsequent experiments
because this dosage level did not influence HUVEC viability.

To investigate whether these ginsenosides have beneficial ef-
fects on iE-DAPeinduced EndMT, we examined the protein
expression of EndMT markers. We found that Rg3 substantially
t g-d-glutamyl-meso-diaminopimelic acideinduced endothelial-to-
al of Ginseng Research, https://doi.org/10.1016/j.jgr.2019.01.003
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inhibited the iE-DAPeinduced EndMT and preserved the EC
phenotype (Fig. 2A) whereas treatment with ginsenoside Rb1 had
no significant effect on the iE-DAPeinduced EndMT (data not
shown). We also analyzed EndMT markers by immunocytochem-
istry and found that changes in the expression of the iE-DAPe
induced EndMT markers were consistent with the results of the
protein expression analysis (Fig. 2B). These findings indicate that
Rg3 inhibited the iE-DAPeinduced EndMT in HUVECs and may be a
potential therapeutic option against many EndMT-mediated
diseases.
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3.3. Upregulation of miR-139-5p expression on Rg3 treatment
inhibits iE-DAPeinduced EndMT

Several molecular mechanisms have been shown to regulate
EndMT. In particular, miRNAs are key emerging mediators in
EndMT because of their capacity to regulate multiple targets and
are therefore advantageous in regulating phenotypic plasticity in
ECs. In addition, several studies have shown the association be-
tween ginseng and miRNAs in different contexts [30,43e46]. In a
previous study, it was demonstrated that miR-139-5p is highly
expressed in ECs and plays a key role in maintaining vascular ho-
meostasis [47]. Furthermore, several studies have shown that miR-
139-5p plays a critical role in the regulation of EMT [48,49]. Thus, to
determine the molecular mechanism underlying the effect of Rg3
on iE-DAPeinduced EndMT, we first assessed the effect of iE-DAP
on miR-139-5p expression. We found that iE-DAP treatment led
to a significant decrease in miR-139-5p expression after 2, 4, and 6
d (Fig. 3A), whereas Rg3 treatment significantly upregulated miR-
139-5p expression in the basal state (Fig. 3B). To further investigate
the relationship between Rg3 and miR-139-5p in iE-DAPeinduced
EndMT, we tested whether downregulation of miR-139-5p
expression in response to iE-DAP is restored by Rg3 treatment. As
shown in Fig. 3C, the miR-139-5p level was restored on treatment
with Rg3 in conjunction with iE-DAP on the 2nd, 4th, and 6th d.
Furthermore, western blotting and immunohistochemistry showed
Fig. 2. Rg3 ameliorates iE-DAPeinduced EndMT in HUVECs. (A) Protein expressions of endot
fibronectin (FN), N-cadherin (N-Cad), and smooth muscle protein 22 alpha (SM22a) after tr
mL) for 2, 4, and 6 d. The medium added with iE-DAP (20 mg/mL) and Rg3 (10 mg/mL) was
compared with the controls, as determined by the unpaired two-tailed Student t test. Erro
EndMT, endothelial-to-mesenchymal transition; HUVEC, human umbilical vein endothelia
standard error of the mean; VE, vascular endothelial.

Please cite this article as: Lee A et al., Ginsenoside Rg3 protects agains
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that the iE-DAPeinduced expression of the mesenchymal markers,
fibronectin and N-cadherin, was significantly inhibited bymiR-139-
5p overexpression (Fig. 3D and E). Taken together, these findings
support that miR-139-5p may play a critical role in the beneficial
effect of Rg3 on iE-DAPeinduced EndMT.
3.4. The Rg3emiR-139-5p axis suppresses iE-DAPeinduced Akt/NF-
kB signaling in HUVECs

We further investigated downstream signaling of the Rg3emiR-
139-5p axis in this context. Several studies have shown that Rg3
inhibits NF-kB signaling in cancer cells and ECs [50,51]. In addition,
activation of NF-kB signaling is closely associated with the process
of EndMT induction [52,53]. Therefore, to determine whether Rg3
affects NF-kB activation in ECs, we first examined the effect of Rg3
on NF-kB nuclear accumulation by determining the p65 protein
levels in the nuclear fraction. We found that iE-DAP treatment led
to a robust increase in p65 protein levels, which was abrogated by
cotreatment with Rg3 (Fig. 4A). Given that Rg3 can regulate the
expression of miR-139-5p, we then determined the detailed
downstream signaling of miR-139-5p regulated by Rg3. We tested
the effect of miR-139-5p on this response and found that iE-DAP
treatment resulted in a robust increase in p65 protein levels,
which was abrogated with concurrent overexpression of miR-139-
5p in the nuclear fraction (Fig. 4B). Translocation of NF-kB from the
cytoplasm to the nucleus via importin proteins requires the phos-
phorylation of IkB-a and its subsequent degradation, thus allowing
the activation of NF-kB target genes. In this canonical NF-kB
signaling pathway, importin proteins play an essential role in the
translocation of NF-kB to the nucleus [54]. As shown in Fig. 4B, iE-
DAPeinduced IkB-a phosphorylation was markedly reduced by
concurrent overexpression of miR-139-5p in the cytoplasmic frac-
tion, whereas iE-DAP reduced IkB-a, and it was dramatically
restored by concurrent overexpression of miR-139-5p in the cyto-
plasmic fraction. We then explored the effect of miR-139-5p on NF-
kB nuclear accumulation by immunocytochemistry. As shown in
helial and mesenchymal markers. (B) Immunostaining images of VE-cadherin (VE-Cad),
eatment with iE-DAP (20 mg/mL) in conjunction with or without Rg3 treatment (10 mg/
changed every other day. Scale bar ¼ 50 mm. *P < 0.05, **P < 0.01, and ***P < 0.001

r bars, s.e.m. N ¼ 3 experiments per condition.
l cell; iE-DAP, g-d-glutamyl-meso-diaminopimelic acid; Rg3, ginsenoside Rg3; s.e.m.,

t g-d-glutamyl-meso-diaminopimelic acideinduced endothelial-to-
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Fig. 3. iE-DAPeinduced EndMT is regulated by miR-139-5p. (A) Mature miR-139-5p expression in response to iE-DAP treatment (20 mg/mL) for 2, 4, and 6 d. (B) Mature miR-139-5p
expression in response to Rg3 treatment (10 mg/mL) for 2 d. (C) Mature miR-139-5p expression in response to iE-DAP (20 mg/mL) with or without concurrent treatment with Rg3
(10 mg/mL) for 2, 4, and 6 d. (D) Protein expression. (E) Immunostaining images of fibronectin (FN) and N-cadherin (N-Cad) in response to iE-DAP treatment (20 mg/mL) with or
without miR-139-5p overexpression (12 nM) for 2 d. Scale bar ¼ 50 mm. *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the controls, as determined by the unpaired two-
tailed Student t test. Error bars, s.e.m. N ¼ 3 experiments per condition.
EndMT, endothelial-to-mesenchymal transition; iE-DAP, g-d-glutamyl-meso-diaminopimelic acid; Rg3, ginsenoside Rg3; s.e.m., standard error of the mean.
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Fig. 4C, overexpression of miR-139-5p led to a reduction in nuclear
p65 localization. These data suggest that the inhibitory role of Rg3e
miR-139-5p in iE-DAPeinduced EndMT may be due to inhibition of
the NF-kB pathway by suppression of NF-kB nuclear translocation.

To further investigate the direct target of miR-139-5p in this
response, we used target prediction algorithm (TargetScan) to
Fig. 4. Rg3 suppresses iE-DAPeinduced EndMT via Akt/NF-kB signaling. (A) Nuclear p65 pro
with Rg3 (10 mg/mL) for 2 d. (B) Protein expression of nuclear p65, cytosolic IkB, and cytoso
(12 nM) for 2 d. (C) Immunostaining images of nuclear p65 translocation in response to iE
bar ¼ 50 mm. (D) Importin-a3 and TAK1 protein expression in response to lentiviral miR-139-
(20 mg/mL) with or without miR-139-5p overexpression (12 nM) for 2 d. (F) Schematic outlin
with the controls, as determined by the unpaired two-tailed Student t test. Error bars, s.e.m
ECs, endothelial cells; EndMT, endothelial-to-mesenchymal transition; iE-DAP, g-d-glutamy
TAK1, transforming growth factor beta-activating kinase 1.
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identify the potential targets of miR-139-5p associated with NF-kB
signaling. Two candidates of importin-a3 and transforming growth
factor beta-activating kinase 1 (TAK1) were identified as predicted
targets associated with NF-kB signaling. First, we tested whether
miR-139-5p can directly target importin-a3, a protein essential for
NF-kB translocation to the nucleus. However, the overexpression of
tein expression in response to iE-DAP (20 mg/mL) with or without concurrent treatment
lic p-IkB in response to iE-DAP (20 mg/mL) with or without miR-139-5p overexpression
-DAP (20 mg/mL) with or without miR-139-5p overexpression (12 nM) for 2 d. Scale
5p overexpression for 4 d. (E) Protein expression of p-Akt and Akt in response to iE-DAP
ing of the proposed mechanism in ECs. *P < 0.05, **P < 0.01, and ***P < 0.001 compared
. N ¼ 3 experiments per condition.

l-meso-diaminopimelic acid; s.e.m., standard error of the mean; Rg3, ginsenoside Rg3;

t g-d-glutamyl-meso-diaminopimelic acideinduced endothelial-to-
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miR-139-5p did not affect importin-a3 expression in ECs, although
NF-kB translocation to the nucleus was inhibited by Rg3 and miR-
139-5p, suggesting that different mechanisms are involved in NF-
kB translocation mediated by Rg3emiR-139-5p. Because activation
of NF-kBwas inhibited by TAK1 inhibitors thosewere predicted as a
potential target of miR-139-5p [55], we suspected that TAK1 is the
direct target ofmiR-139-5p. However, TAK1 expressionwas also not
changed by miR-139-5p overexpression (Fig. 4D). It has been
shown that miR-139-5p inhibits Akt signaling, which is potentially
upstream of NF-kB [49,50,56,57]. Thus, we examined the effect of
miR-139-5p on the AKT/NF-kB pathway. Overexpression of miR-
139-p led to a significant decrease in phosphorylated Akt (Fig. 4E)
and inhibition of NF-kB translocation to the nucleus (Fig. 4B and C).
These data indicate that the Rg3emiR-139-5p axis, but not
importin-a3 and TAK1, blocked the NF-kB nuclear translocation
through Akt signaling.

4. Discussion

Endothelial dysfunction under inflammatory conditions can
lead to various diseases such as fibrosis, pathological angiogenesis,
and PAH [1,58], and EndMT in endothelial dysfunction is an
emerging concept in the pathogenesis of vascular diseases [1,12].
Here, we described an Rg3-mediated beneficial effect on EndMT via
inhibition of Akt/NF-kB signaling mediated by miR-139-5p upre-
gulation and provide valuable insights into a novel therapeutic
strategy for many diseases caused by inflammation-induced
EndMT.

Proinflammatory cytokines, tumor necrosis factor, interleukin-
1 beta, and interleukin-6 induce EndMT in several ECs [12]. In
addition, it has been identified that endotoxins, LPS, and septic
serum induce EndMT [19e23,59]. Intracellular pathogens are
sensed by NLRs, followed by inflammatory gene expression trig-
gered by activation of NOD1 and NOD2 signaling [60]. A recent
study demonstrated that NOD2 promotes EndMT in glomerular
ECs in cases of diabetic nephropathy [61]. However, the relation
between NOD1 and EndMT has never been studied. We demon-
strated that NOD1 activation by iE-DAP induces EndMT. Treatment
with iE-DAP promotes a morphological change and expression of
the stress fiber, F-actin. In addition, protein and RNA expressions
of mesenchymal markers were upregulated, whereas endothelial
markers were downregulated in response to iE-DAP. Moreover, iE-
DAPeinduced EndMT was inhibited by the NOD1 inhibitor,
ML130.

Because EndMT is involved in various inflammation-associated
diseases, it is considered a therapeutic target [1]. Many studies
have shown that blocking of EndMT ameliorates fibrosis, PAH, and
diabetic nephropathy, which could be driven by inflammation. For
example, salvianolic acid A, a type of polyphenolic compound, in-
hibits EndMT and improves vascular function in animal models of
PAH [62]. The DPP-4 inhibitor linagliptin alleviated kidney fibrosis
by blocking EndMT in a diabetic nephropathy model [63]. It has
been demonstrated that ginseng extracts and ginsenosides have
antiinflammatory effects and act as vascular protective agents [64].
Among various ginsenosides, Rb1 and Rg3 exert vascular protective
effects. Ginsenoside Rb1 ameliorates LPS-induced lung injury and
vascular protein leakage in rats [65,66]. Furthermore, it improves
endothelial function by regulating the production of eNOS [67].
Previous studies have demonstrated the antiinflammatory effect of
Rg3 on epithelial cells, macrophages, and ECs [33,34,68], as well as
on LPS-treated rats [67,69]. As Rb1 and Rg3 exhibit a protective role
against endothelial dysfunction and vascular injury, we examined
the effects of both these ginsenosides on iE-DAPeinduced EndMT.
Rg3 treatment restored the expression of iE-DAPeinduced EndMT
markers to baseline levels; however, Rb1 had no such effect.
Please cite this article as: Lee A et al., Ginsenoside Rg3 protects agains
mesenchymal transition by regulating the miR-139-5peNF-kB axis, Journ
Because it has been reported that ginsenoside Rb1 and Rg3 have
similar chemical structures and cardioprotective effects, but only
Rg3 has antitumor effect, our findings may be related to those of
previous studies [70].

Although Rg3 has been approved for clinical applications, its
relationship with EndMT has never been studied. Therefore,
although we have shown the possibility of Rg3 being a therapeutic
agent for inflammation-associated diseases, further investigations
are needed. Moreover, studies on whether Rg3 treatment affects
fibroblast proliferation are required. In addition, clinically effica-
cious doses of Rg3 for the treatment of EndMT-associated inflam-
matory diseases need to be determined.

In our study, we examined the molecular mechanism underly-
ing iE-DAPeinduced EndMT. Many studies have demonstrated that
miR-139-5p inhibits EMT and enhances the drug sensitivity of
carcinoma cells [48,49,71,72]. Shear stresseresponsive endothelial
miR-139-5p is crucial for vascular maturation [47]. However, the
role of miR-139-5p in the endothelium remains unclear with regard
to EndMT. We demonstrated that miR-139-5p was downregulated
by iE-DAP and recovered by Rg3 treatment. Overexpression of miR-
139-5p suppressed the protein markers fibronectin and N-cad-
herin. Our findings suggest that iE-DAPeinduced EndMT is partly
mediated by miR-139-5p (Fig. 4F).

Inflammatory stimuli induce EndMT through NF-kB activation
[12]. It has been reported that miR-139-5p is associated with
inflammation. For example, deletion of miR-139-5p induces in-
testinal inflammation through NF-kB signaling in vivo [73]. Thus,
we examined the correlation between NF-kB signaling and miR-
139-5p under inflammatory conditions. Our findings revealed
that miR-139-5p overexpression and Rg3 suppress NF-kB
signaling. Because the mechanism of miR-139-5pemediated
regulation of NF-kB remains unclear, we investigated the pre-
dicted target of miR-139-5p. We discovered that both importin-a3
and TAK1 were not direct targets of miR-139-5p in ECs. Therefore,
further studies are necessary to determine the direct targets
involved in the regulation of EndMT by miR-139-5p, although we
identified the regulation of the Akt/NF-kB signaling by the Rg3e
miR-139-5p axis.

In conclusion, we demonstrated that NOD1 activation by iE-DAP
induces EndMT through Akt/NF-kB signaling, which can be
reversed by Rg3. Furthermore, we identified that miR-139-5p is
involved in the regulation of iE-DAPeinduced EndMT. Our findings
suggest Rg3 can be a useful therapeutic target for many diseases
caused by inflammation-induced EndMT (Fig. 4F).
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