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BACKGROUND & AIMS: We investigated whether ABL proto-
oncogene 1, non-receptor tyrosine kinase (ABL1) is involved
in development of hepatocellular carcinoma (HCC). METHODS:
We analyzed clinical and gene expression data from The Cancer
Genome Atlas. Albumin-Cre (HepWT) mice and mice with
hepatocyte-specific disruption of Abl1 (HepAbl–/– mice) were
given hydrodynamic injections of plasmids encoding the
Sleeping Beauty transposase and transposons with the MET
gene and a catenin b1 gene with an N-terminal truncation,
which induces development of liver tumors. Some mice were
then gavaged with the ABL1 inhibitor nilotinib or vehicle
(control) daily for 4 weeks. We knocked down ABL1 with short
hairpin RNAs in Hep3B and Huh7 HCC cells and analyzed their
proliferation and growth as xenograft tumors in mice. We
performed RNA sequencing and gene set enrichment analysis of
tumors. We knocked down or overexpressed NOTCH1 and MYC
in HCC cells and analyzed proliferation. We measured levels of
phosphorylated ABL1, MYC, and NOTCH1 by immunohisto-
chemical analysis of an HCC tissue microarray. RESULTS: HCC
tissues had higher levels of ABL1 than non-tumor liver tissues,
which correlated with shorter survival times of patients. HepWT

mice with the MET and catenin b1 transposons developed liver
tumors and survived a median 64 days; HepAbl–/– mice with
these transposons developed tumors that were 50% smaller
and survived a median 81 days. Knockdown of ABL1 in human
HCC cells reduced proliferation, growth as xenograft tumors in
mice, and expression of MYC, which reduced expression of
NOTCH1. Knockdown of NOTCH1 or MYC in HCC cells signifi-
cantly reduced cell growth. NOTCH1 or MYC overexpression in
human HCC cells promoted proliferation and rescued the
phenotype caused by ABL1 knockdown. The level of phos-
phorylated (activated) ABL1 correlated with levels of MYC and
NOTCH1 in human HCC specimens. Nilotinib decreased
expression of MYC and NOTCH1 in HCC cell lines, reduced the
growth of xenograft tumors in mice, and slowed growth of liver
tumors in mice with MET and catenin b1 transposons, reducing
tumor levels of MYC and NOTCH1. CONCLUSIONS: HCC sam-
ples have increased levels of ABL1 compared with nontumor
FLA 5.6.0 DTD � YGAST63271_proof
liver tissues, and increased levels of ABL1 correlate with
shorter survival times of patients. Loss or inhibition of ABL1
reduces proliferation of HCC cells and slows growth of liver
tumors in mice. Inhibitors of ABL1 might be used for treatment
of HCC.
Keywords: Hepatocarcinogenesis; Mouse Model; Signal Trans-
duction; Oncogene.

epatocellular carcinoma (HCC) is the major form of
Hliver cancer. It is the sixth most common malig-
nancy globally and ranks fourth in total cancer-related
deaths annually.1 The 5-year overall survival of patients
with a new diagnosis of HCC is <18%, and a majority of HCC
patients present with advanced disease, so treatment op-
tions are limited.2 Currently, first-line therapeutic agents for
advanced HCC, either sorafenib or lenvatinib, increase sur-
vival by only approximately 3 months.3 Recently a number
of drugs, including regorafenib, cabozantinib, and nivolu-
mab, have been approved by the US Food and Drug
Administration for second-line treatment of HCC.3 However,
these drugs only offer a further increase in overall survival
of 3–5 months. Therefore, it is imperative to develop new
and more effective therapeutic strategies and agents to treat
� 23 June 2020 � 10:19 pm � ce
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

The oncogene ABL1 might be involved in the
pathogenesis of hepatocellular carcinoma (HCC).

NEW FINDINGS

HCC samples have increased levels of ABL1 compared
with non-tumor liver tissues, and loss or inhibition of
ABL1 reduces proliferation of HCC cells and slows
growth of tumors in mice.

LIMITATIONS

This study was performed using human tissue samples,
cell lines, and mice. Further studies in humans are
needed.

IMPACT

Inhibitors of ABL1 might be developed for treatment of
HCC
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HCC, but achieving this goal requires a better understanding
of the molecular signaling pathways that drive or mediate
the development of the disease.

Abelson tyrosine-protein kinase 1 (ABL1) is a non-
receptor tyrosine kinase of the Abelson-like family. It is
mostly known for its involvement in leukemias harboring
the Philadelphia chromosome, which results from the
translocation of the short arms of chromosomes 9 and 22,
creating a fusion of the BCR gene to the second exon of the
ABL1 gene, resulting in the production of the BCR-ABL
fusion protein.4 Recent evidence has shown that ABL1 also
plays an important role in the development of solid tumors,
such as melanoma, breast cancer, ovarian cancer, and lung
cancer, by an independent mechanism not involving any
fusion oncoproteins.4 We previously reported that ABL1 is
overexpressed and activated in human HCC specimens.5

However, the role of ABL1 in hepatocarcinogenesis must
be understood because it is critical for determining whether
ABL1 is a suitable candidate target in the treatment of HCC.

We report that overexpression of ABL1 correlates with
poor prognosis in HCC. We investigated the role of ABL1 in
HCC growth using in vitro and mouse models. We found that
ABL1 inhibition impaired HCC growth and extended overall
survival of mice with HCC. Mechanistically, we found that
inhibition of ABL1 suppresses HCC cell growth by
decreasing NOTCH1 expression through the regulation of c-
MYC. Collectively, our data strongly suggest that ABL1 is
involved in the pathogenesis of HCC and that its inhibition
could be a promising novel strategy to treat this disease.
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Methods
Cells and Treatments

Huh7 cells were purchased from JCRB Cell Bank (Osaka,
Japan). Hep3B, Skep1, SNU423, SNU449, SNU475, PLC/PRF,
SNU387, and 293T cells were purchased from ATCC (Manassas,
VA). All cells were cultured as described previously.6

For knockdown experiments, Huh7 and Hep3B cells were
infected with lentiviral pLKO.1 particles, which contain ABL1,
FLA 5.6.0 DTD � YGAST63271_proof
NOTCH1, c-MYC, or scrambled short hairpin RNA (shRNA) and
selected with 2 mg/mL puromycin for 5 days. Lentiviral pLKO.1
plasmids for shABL1 (Supplementary Table 1), shNOTCH1
(Supplementary Table 1), shc-MYC,7 or scrambled shRNA
(SHC002; Sigma-Aldrich, St Louis, MO) were packaged with
pCMV-dr8.2 (Addgene, Watertown, MA) and pCMV-VSVG
(Addgene) in 293T cells to produce lentiviral particles, as
described previously.7

For NOTCH1 overexpression experiments, the NOTCH1
(NOTCH intercellular domain) expression plasmid
(EF.hICN1.CMV.GFP), purchased from Addgene (#17623), was
packaged with CMV-dr8.2 and pCMV-VSVG in 293T cells to
produce lentiviral particles. Six days after infection with the
lentiviral particles, GFP-positive scrambled and ABL1 knock-
down (KD) Huh7 cells expressing NOTCH1 were sorted by flow
cytometry (FACSAria QCell Sorter; BD Biosciences, San Jose, CA).
The proliferation of these cells was then analyzed using ala-
marBlue assay, as described previously.6

For experiments involving the overexpression of c-MYC, the
pBpuro c-MycER Qretroviral plasmid (gifted from Dr Gerard
Evan)8 and control pBpuro retroviral plasmids (Addgene,
#1764) were packaged with pMD.MLV and pMD.G/pVSV.G in
293T cells to produce retroviral particles. Six days after infec-
tion with the retroviral particles, scrambled and ABL1-KD Huh7
cells were treated with 100 nM 4-hydroxytamoxifen. The pro-
liferation of these cells was then analyzed using alamarBlue
assay.

For ABL inhibitor experiments, HCC cells were seeded into
96-well plates. After 24 hours in culture, the cells were treated
with nilotinib (LC Laboratories, Woburn, MA; cat #N-8207) (1–
20 mM) or GNF-5 (Selleckchem, Houston, TX; cat #S7526) (1–
20 mM); cell proliferation was then analyzed using either SRB9 Q

or alamarBlue assay after 48 or 72 hours.

Mice and Treatments
All animals received humane care according to the Guide for

the Care and Use of Laboratory Animals. The procedures for all
animal experiments detailed were approved by the Institutional
Animal Care and Use Committee of Loyola University Chicago.
All mice were housed in micro-isolator cages in a room illu-
minated from 7:00 AM to 7:00 PM (12:12-hour light–dark cycle)
and were given access to water and chow ad libitum.

To generate mice with hepatocyte-specific Abl1-defi-
ciency, Abl1flox/flox mice (Jackson Laboratory, Bar Harbor, ME;
cat #013224) were backcrossed to C57BL/6J mice for 5
generations and then were mated with Albumin-Cre mice
(Jackson Laboratory; cat #003574). The resulting offspring
Alb-Cre; Abl1flox/þ mice were then mated to generate the Al-
bumin-Cre and Alb-Cre; Abl1flox/flox littermates. The age- (6–8
weeks old) and sex-matched Albumin-Cre and Alb-Cre; Abl1-
flox/flox mice were injected with plasmids, encoding the
Sleeping Beauty transposase (HSB2) and transposons with
GFP (pT3-GFP) or MET gene and catenin b1 gene with the N-
terminal truncation (referred to here as MET/CAT), as
described previously.10

Four weeks after MET/CAT injection, C57BL/6J wild-type
mice were given with vehicle (30% captisol), nilotinib (20
mg/kg) or sorafenib (25 mg/kg) by oral gavage daily for 4
weeks or before being sacrificed (some mice treated with
vehicle had to be euthanized earlier due to tumor burdens).
Age- and sex-matched mice were allocated to different
� 23 June 2020 � 10:19 pm � ce
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Figure 1. High expression of ABL1 in human HCCs is positively correlated with shorter patient survival times. (A) Relative
expression of ABL1 mRNA in normal liver and HCC specimens from TCGA database. (B) ABL1mRNA expression is correlated
with shorter survival times in HCC patients. (C) Representative photos of ABL1 and p-ABL1 IHC staining in adjacent normal
liver and HCC specimens from tissue microarrays. (D, E) Quantification of ABL1 and p-ABL1 IHC staining from tissue
microarrays (66 cases of HCC and 50 normal tissue specimens).
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treatment groups. Both male and female mice were used in the
experiments. Six- to-eight-week-old mice were used for hy-
drodynamic injections.

Xenograft model. Huh7 cells (5 � 106 in 100 mL
serum-free medium) were injected into the left or right flanks
FLA 5.6.0 DTD � YGAST63271_proof
of the 8- to 12-week-old SCID-bg mice. Three weeks post-
injection, some mice were given with vehicle (30% captisol)
or nilotinib (20 mg/kg) by oral gavage daily for 10 days.
Tumor volumes were measured daily using a caliper until the
day of sacrifice.
� 23 June 2020 � 10:19 pm � ce
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Western Blotting
Western blotting was performed as described previously.6

Information on primary antibodies is provided in
Supplementary Table 2.
545
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549

550

551

552
Quantitative Real-Time Polymerase Chain
Reaction

Cellular or tissue messenger RNA (mRNA) was extracted
using Zymo mini-columns and quantitative real-time polymer-
ase chain reactions were performed as described previously.6

Primers used for real-time polymerase chain reaction are lis-
ted in Supplementary Table 3.
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Immunohistochemical Staining
IHC was performed as described previously.10 Human tis-

sue microarrays LV801, LV807, and LV8012 were purchased
from US Biomax (Rockville, MD). LV801 and LV807 contain a
total of 66 cases of HCC and 50 cases of HCC adjacent normal or
normal liver tissues. LV8012 contains 80 cases of HCC (TNM
stage II–IV). The IHC signals were quantified visually. The
staining was scored as � (0, negative), þ (1, weak signal), þ þ
(2, moderate signal), and þ þ þ (3, strong signal) by 2 inde-
pendent observers, including a pathologist from Loyola Uni-
versity Chicago; a sample was rated as positive if it showed at
least 1% of cells with a staining score �1þ. For IHC on mouse
samples, cells with positive staining were scored in at least 5
fields at 400� or 200� magnification and reported as mean ±
SD. Information on primary antibodies for IHC is provided in
Supplementary Table 2.
12

570

571

572

573

574

575

576

577

578

579

580

BA
SI
C
AN

TR
AN

SL
AT

IO
N

Terminal Deoxynucleotidyl Transferase–Mediated
Deoxyuridine Triphosphate Nick-End Labeling
Staining

Terminal deoxynucleotidyl transferase–mediated deoxyur-
idine triphosphate nick-end labeling (TUNEL) staining was
performed as described previously.6 The TUNEL-positive cell
number was scored in at least 5 fields at 400� magnification/
mouse and reported as mean ± SD. Three or more mice were
used in each group.
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RNA Sequencing and Analysis
RNA from scrambled control and ABL1-KD Huh7 cells was

extracted using RNeasy Plus Micro Kit (Qiagen, Germantown,
MD). RNA sequencing was performed by Novogene Corporation
(Hong Kong). Gene set enrichment analysis (GSEA) was per-
formed using the 3.0 GSEA software. The RNA sequencing data
were deposited into the National Center for Biotechnology In-
formation’s Gene Expression Omnibus database (GEO
=
Figure 2. Deletion of Abl1 suppresses tumor development and p
(A) Levels of p-ABL1 (p-Y412), ABL1, p-CRKL and GAPDH pro
injection of MET/CAT or pT3-GFP. (B) Photographs and H&E s
injection of MET/CAT. (C) Liver body/weight ratios were analyzed
HepAbl1–/– mice after injection of MET/CAT. (E) Hepatocyte prolife
MET/CAT was examined by immunohistochemistry for Ki67. (F)
the livers of HepWT and HepAbl1–/– mice 9 weeks after injection
cation of TUNEL staining for (G) (n ¼ 4).

FLA 5.6.0 DTD � YGAST63271_proof
GSE133294. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc¼GSE133294).

Chromatin Immunoprecipitation Assay
Huh7 cell were cultured as described above and chromatin

immunoprecipitation assays were performed as described
previously11 using a c-MYC antibody (#5605; Cell Signaling,
Danvers, MA). The primers used are listed in Supplementary
Table 3.

Proximity Ligation Assay
Proximity ligation assay was performed using the Duolink

In Situ Red Starter Kit Mouse/Rabbit (MilliporeSigma, Bur-
lington, MA) according to the manufacturer’s instructions. De-
tails are provided in the Supplementary Material.

Human Sample Analysis
Alterations of ABL1, NOTCH1, and c-MYC mRNA were

analyzed from publicly available data from The Cancer Genome
Atlas (TCGA).12 Analysis of gene expression, Kaplan-Meier
survival analyses, and correlations were performed using R,
version 3.6.0, Python, version 3.0, and GraphPad Prism, version
8.0 (GraphPad, San Diego, CA) software. Details are provided in
the Supplementary Material.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism

software, version 8.0. Variation is indicated using standard
error presented as mean ± SD. Statistical significance was
calculated using the 2-tailed Student t test, except for the ex-
periments involving repeated measures, which were analyzed
using 2-way analysis of variance. P < .05 was considered sig-
nificant. Means ± SDs are shown in the Figures Qwhere
applicable.

Results
High Expression of ABL1 in Human
Hepatocellular Carcinomas Is Positively
Correlated With Shorter Survival Times of
Patients

We previously reported that ABL1 is overexpressed in
human HCC specimens with a small sample size.5 To
confirm the results with a larger sample size, we analyzed
the TCGA database and confirmed that ABL1 was expressed
at higher levels in HCCs compared to normal liver tissues
(Figure 1A). In addition, we found that higher ABL1
expression is positively correlated with poorer prognosis in
human HCC patients from the TCGA database (Figure 1B
rolongs survival in the MET/CAT-induced HCC mouse model.
teins in the livers of HepWT mice 9 weeks after hydrodynamic
taining of livers of HepWT and HepAbl1–/– mice 9 weeks after
in the mice from (B) (n ¼ Q156). (D) Survival curves of HepWT and
ration of HepWT and HepAbl1–/– mice 9 weeks after injection of
Quantification of Ki67 staining for (E) (n ¼ 4). (G) Apoptosis in
of MET/CAT was examined by TUNEL staining. (H) Quantifi-

� 23 June 2020 � 10:19 pm � ce

591

592

593

594

595

596

597

598

599

600

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133294
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133294
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133294


w
e
b
4
C
=
F
P
O

Figure 3. ABL1 knockdown reduces human HCC cell proliferation and suppresses tumor growth. (A) ABL1 and GAPDH protein
expression in scrambled-RNA and ABL1-KD Hep3B and Huh7 cells was determined by Western blotting. (B) Quantification o
cell proliferation from scrambled-RNA and ABL1-KD Hep3B and Huh7 cells at different time points after seeding. (C) SCID-bg
mice were injected on their flanks with scrambled-RNA (left) and ABL1-KD Huh7 cells (right); after 40 days, gross images o
tumors are shown. (D) Tumor weight from scrambled-RNA and ABL1-KD Huh7 cell-injected mice (n ¼ 5). (E) Tumor volumes
from scrambled-RNA and ABL1-KD Huh7 cell-injected mice (n ¼ 5/group). (F) Ki67 staining of the tumors was examined by
IHC. (G) Quantification of Ki67 staining. (H) Apoptosis of the tumors was examined by TUNEL staining. (I) Quantification o
TUNEL staining.
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and Supplementary Figure 1), which suggests that it could
be a good prognostic factor. We also performed 2 additional
HCC tissue microarrays, which contain 66 cases of HCC and
50 cases of HCC adjacent normal or normal liver tissues.
Consistent with previous results,5 we found that ABL1
protein levels were significantly higher in tumors compared
to normal liver tissues (Figure 1C and D). Kinase activity is
critical for the functions of ABL1.13 Phosphorylation of
Tyr412, which is located in the kinase activation loop of
ABL1, is required for its kinase activity.14,15 We found that
the level of p-ABL1 (p-Tyr412) is largely absent in normal
liver tissues, but is abundant in HCC specimens (Figure 1C
and E). It is notable that 86% of HCC specimens with high p-
ABL1 (p-Tyr412) staining also express high levels of ABL1
(Figure 1D and E). In general, these data indicate that ABL1
is overexpressed and activated in human HCCs, and that
these factors correlate with shorter survival times of
patients.
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Deletion of Abl1 in Hepatocytes Does Not Affect
Morphology, Histology, Proliferation, or
Apoptosis in Mouse Livers

To investigate the role of ABL1 in liver tumorigenesis,
we generated mice with hepatocyte-specific deletion of
Abl1 (Albumin-Cre; Abl1flox/flox). Albumin-Cre; Abl1flox/flox

mice (referred to here as HepAbl1–/–) express Cre recom-
binase from the albumin promoter, which is specifically
expressed in hepatocytes. HepAbl1–/– mice are viable,
fertile, and visually indistinguishable from wild-type (Al-
bumin-Cre, referred to here as HepWT) mice, suggesting
that Abl1 is not required for normal liver development.
We confirmed that Cre recombinase expression in hepa-
tocytes removes the Abl1 allele between 2 loxP sites
(Supplementary Figure 2A) and showed that ABL1
expression was decreased in both whole liver tissue and
hepatocytes (Supplementary Figure 2B). There was no
significant difference in morphology or histology of livers
between HepWT and HepAbl1–/– mice (Supplementary
Figure 2C and D). Furthermore, Abl1 deficiency did not
affect cell proliferation or apoptosis in mouse livers
(Supplementary Figure 2E–H). These results suggest that
deletion of Abl1 in hepatocytes does not affect mouse liver
homeostasis.
825

826

827

828

829

830

831

832

833

834

835

836

837

838

839
Deficiency of Abl1 in Hepatocytes Suppresses
MET/CAT-Induced Hepatocellular Carcinoma
Development

MET can bind directly to ABL1 and activate it in mouse
mammary tumors and breast cancer cells.16 To determine the
role of ABL1 in HCC development, we used the MET (MET)/b-
catenin (CAT)-driven HCC model, which is useful for studying
the functions of genes in hepatocarcinogenesis because of its
clinical relevance and efficiency of HCC induction.10,17 We
found that levels of phosphorylation of both ABL1 on Tyr412
and CRKL, a direct target of ABL kinases18 commonly used to
assess ABL kinase activity, was increased in MET/CAT-
induced liver tumors, suggesting that ABL1 is activated in
FLA 5.6.0 DTD � YGAST63271_proof
MET/CAT-induced HCC (Figure 2A). Expression of ABL1 was
also increased in MET/CAT-induced liver tumors (Figure 2A).
In contrast, expression or phosphorylation of ABL1 was not
altered in the diethylnitrosamine-induced HCC model
(Supplementary Figure 3). These observations suggest that the
MET/CAT model is suitable for studying the role of ABL1 in
hepatocarcinogenesis. We hydrodynamically injected age- and
sex-matched HepWT and HepAbl1–/– mice with plasmids
encoding the Sleeping Beauty transposase (HSB2) and trans-
posons with the MET/CAT oncogenes. Comparable trans-
fection efficiency was observed in wild-type and Abl1 KO
mouse livers (Supplementary Figure 4). Intriguingly, we found
that the overall tumor load and tumor sizes in HepAbl1–/– mice
was decreased significantly compared to HepWT mice
(Figure 2B). The relative liver weight, including tumor vs body
weight, in HepAbl1–/– mice was decreased by 50% compared to
HepWT mice (Figure 2C). Importantly, the HepWT mice with a
liver tumor burden died at the age of 55–70 days (median
survival 64 days) compared to a median survival of 81 days in
HepAbl1–/– mice (Figure 2D). These data indicate that Abl1
deficiency in hepatocytes suppresses MET/CAT-induced HCC
growth and prolongs survival of mice with HCC.

ABL1 regulates cell survival and proliferation.4 Sup-
pression of HCC development by the deletion of Abl1
could be due to increased apoptosis or decreased prolif-
eration of tumor cells. We first analyzed proliferation in
the MET/CAT-injected livers from HepWT and HepAbl1–/–

mice by Ki67 staining. The number of Ki67-positive cells
was significantly decreased in tumors but not in tumor-
free areas in Abl1-deficient livers compared to wild-type
livers (Figure 2E and F). We did not find significant dif-
ferences in apoptosis in livers of HepWT mice compared to
those of HepAbl1–/– mice (Figure 2G and H). These results
demonstrate that Abl1 deficiency in hepatocytes decreases
tumor cell proliferation but not cell survival in MET/CAT-
induced HCC.
Knockdown of ABL1 Reduces Human
Hepatocellular Carcinoma Cell Proliferation and
Suppresses Tumor Growth

We further investigated the role of ABL1 in human
HCC. To achieve this goal, we used shRNA to knock
down ABL1 expression in 2 HCC cell lines that show
high levels of ABL1 mRNA, Hep3B, and Huh7
(Supplementary Figure 5). Western blotting showed that
ABL1 was successfully knocked down by 2 shRNAs in
both cell lines (Figure 3A). Importantly, knockdown of
ABL1 significantly reduced cell growth in both Hep3B
and Huh7 cells (Figure 3B). Consistently, ABL1 knock-
down decreased growth as xenograft tumors in mice
(Figure 3C–E). Tumors grown from ABL1-KD cells also
displayed less cell proliferation compared to those
grown from scrambled-RNA control cells (Figure 3F and
G). However, there was no significant difference in
apoptosis in tumors from the 2 groups (Figure 3H and
I). Collectively, these results indicate that knockdown of
ABL1 reduces human HCC cell proliferation and sup-
presses tumor growth.
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Knockdown of ABL1 Inhibits Hepatocellular
Carcinoma Cell Proliferation by Decreasing
NOTCH1 Expression

To determine the molecular mechanisms by which ABL1
promotes HCC cell proliferation, we performed RNA
sequencing analysis using scrambled-control and ABL1-KD
cells and proceeded to do GSEA. NOTCH signaling is one
of the most significantly down-regulated gene pathways that
result from ABL1 knockdown (Figure 4A and B). NOTCH
signaling has been shown to play an important role in tumor
cell growth in many types of cancer,19 including HCC. We
therefore hypothesized that knockdown of ABL1 inhibits
HCC cell proliferation by inhibiting signaling along the
NOTCH pathway. We used real-time polymerase chain re-
action assays to confirm that ABL1 knockdown decreased
mRNA expression for a number of NOTCH signaling
pathway genes, including NOTCH1, NOTCH3, JAG1, LFENG,
and DTX1 (Figure 4C). We also found that expression of
NOTCH downstream targets, including CyclinD1, NRARP,
HES1, and HES2, were reduced by knockdown of ABL1 in
HCC cells (Figure 4D), suggesting that NOTCH activity was
suppressed in ABL1-KD cells.

Because NOTCH signaling receptors NOTCH1 and
NOTCH3 play critical roles in HCC cell growth,19–21 we
focused on testing whether knockdown of ABL1 inhibits cell
proliferation by decreasing the expression of either NOTCH1
or NOTCH3 in HCC cells. We first performed Western blot-
ting to determine whether the expression of NOTCH1 and/
or NOTCH3 proteins were also decreased by knockdown of
ABL1 in HCC cells. Intriguingly, expression of NOTCH1 but
not NOTCH3 protein was significantly lower in ABL1-KD
cells compared to scrambled-RNA control cells
(Figure 4E), suggesting a possible post-transcriptional,
translational, or post-translational mechanism by which
NOTCH3 might be regulated in ABL1-KD cells. We therefore
focused on NOTCH1 and hypothesized that knockdown of
ABL1 inhibits cell proliferation by decreasing NOTCH1 in
HCC cells. We found that expression of NOTCH1 protein was
higher in MET/CAT-induced liver tumors compared to
control mouse liver, and was reduced in liver tumors when
Abl1 was deleted in hepatocytes (Figure 4F). Consistently,
expression of NOTCH1-targeted genes was also down-
regulated in Abl1-KO mouse HCCs (Supplementary
Figure 6A–C). To further determine whether decreased
=
Figure 4. ABL1 knockdown inhibits HCC cell proliferation by
NOTCH signaling pathway is enriched in ABL1-KD Huh7 cells. (B
signaling pathway is decreased by ABL1 knockdown in Huh7 ce
pathway in scrambled-RNA and ABL1-KD Huh7 cells. (D) Re
scrambled-RNA and ABL1-KD Huh7 cells. (E) NOTCH1, NOTC
ABL1-KD HCC cells was determined by Western blotting. (F) E
HepWT and HepAbl1–/– mice injected with pT3-GFP or MET/CAT f
and GAPDH protein expression in scrambled-RNA and NOTC
blotting. (H) Quantification of cell proliferation from scrambled-R
seeding. (I) Expression of NOTCH1, ABL1, and GAPDH prot
overexpressed (infected with EF.hICN1.CMV.GFP) Huh7 scram
ting. (J) Quantification of cell proliferation from control and NO
different time points after seeding.
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NOTCH1 expression could inhibit HCC cell proliferation, we
knocked down NOTCH1 using shRNA in Huh7 and Hep3B
cells (Figure 4G). We tested 5 distinct shRNAs (data not
shown) and only 1 shRNA efficiently decreased NOTCH1
expression in HCC cells (Figure 4G). We found that knock-
down of NOTCH1 significantly reduced HCC cell growth
(Figure 4H). In addition, NOTCH1 overexpression promoted
cell proliferation and rescued the phenotype caused by
ABL1 knockdown in HCC cells (Figure 4I and J). Overall, our
data demonstrate that knockdown of ABL1 inhibits HCC cell
growth by decreasing NOTCH1 expression.

Knockdown of ABL1 Decreases NOTCH1
Expression Through Regulation of c-MYC in
Hepatocellular Carcinoma Cells

We next investigated the molecular mechanisms by
which ABL1 knockdown decreases NOTCH1 expression in
HCC cells. As NOTCH1 mRNA levels were reduced by ABL1
knockdown, we reasoned that this knockdown affected the
transcription and/or post-transcriptional processing of
NOTCH1 mRNA. MicroRNAs (miRs) have been shown to
directly target NOTCH1 and reduce NOTCH1 mRNA levels.22

We therefore hypothesized that ABL1 knockdown might
decrease NOTCH1 expression by increasing the expression
of some miR(s). Using TargetScan, we identified several
miRs, including miR-150-5p, miR-34-5p, and miR-146b-5p,
which can potentially directly target NOTCH1. However,
we found that only the expression of miR-146b-5p was
increased when ABL1 was knocked down in HCC cells
(Supplementary Figure 7A–C). To determine whether ABL1
knockdown decreases NOTCH1 expression through
increasing miR-146b-5p expression in HCC cells, we used
miR146b-5p mimics or inhibitors. We confirmed that the
miR146b-5p mimic effectively induced expression of
miR146b-5p and inhibitors of miR146b-5p sufficiently
decreased expression of miR146b-5p (Supplementary
Figure 7D and E). However, although we had expected
that overexpression of miR146b-5p by the mimic miR would
decrease expression of NOTCH1 in HCC cells; instead we
found that NOTCH1 expression was slightly increased
(Supplementary Figure 7F). Consistent with this observa-
tion, we found that miR146b-5p inhibition decreased the
expression of NOTCH1 in HCC cells (Supplementary
Figure 7G). These data would appear to suggest that ABL1
decreasing NOTCH1 expression. (A) GSEA shows that the
) A heatmap indicates the expression of genes in the NOTCH
lls. (C) Relative mRNA levels of genes in the NOTCH signaling
lative mRNA levels of NOTCH downstream targets in the
H3, and GAPDH protein expression in scrambled-RNA and
xpression of NOTCH1 and GAPDH proteins in whole livers of
or 9 weeks was determined by Western blotting. (G) NOTCH1
H1-KD Hep3B and Huh7 cells was determined by Western
NA and NOTCH1-KD HCC cells at different time points after
eins in control (infected with EF.CMV.GFP) and NOTCH1-
bled and ABL1-KD cells was determined by Western blot-
TCH1-overexpressed Huh7 scrambled and ABL1-KD cells at
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knockdown might not decrease NOTCH1 expression by
increasing the expression of miRs.

We therefore tested whether ABL1 knockdown re-
duces the transcription of NOTCH1 by regulating tran-
scription factors. ABL1 can regulate phosphorylation of
the transcription factor c-MYC and its transcriptional
activity.23 c-MYC plays a critical role in HCC develop-
ment.24 Interestingly, GSEA indicated that MYC’s target
gene set was down-regulated in ABL1-KD cells
(Figure 5A). Consistently, c-MYC protein level was
much lower in ABL1-KD HCC cells compared to
scrambled-RNA cells (Figure 5B). Expression of c-MYC
protein was higher in MET/CAT-induced liver tumors
compared to control mouse liver, and was reduced in
liver tumors when Abl1 was deleted in hepatocytes
(Supplementary Figure 8). Phosphorylation of c-MYC on
Ser62, which is regulated by ABL123 and is critical for
c-MYC stabilization,25 was also decreased by ABL1
knockdown (Figure 5B). In addition, using proximity
ligation assay,26 we found a strong interaction between
ABL1 and c-MYC in HCC cells (Figure 5C,
Supplementary Figure 9). Although c-MYC has been
shown to be a direct transcriptional target downstream
of NOTCH1 in T-cell acute lymphoblastic leukemia,27

we found that c-MYC protein was not significantly
affected by either knockdown or overexpression of
NOTCH1 in HCC cells (Supplementary Figure 10). On
the other hand, enhanced c-MYC expression may in-
crease the level of NOTCH1 mRNA through regulation
of NRF2.28,29 We therefore hypothesized that knock-
down of ABL1 decreases NOTCH1 expression through
regulation of c-MYC in HCC cells. We found that both
mRNA and protein expression of NOTCH1 was
decreased when c-MYC was knocked down in HCC cells
(Figure 5D and E). In line with this, c-MYC knockdown
inhibited HCC cell growth (Figure 5F). We analyzed the
promoter of human NOTCH1 and identified a putative
binding site for c-MYC (Supplementary Figure 11A).
The chromatin immunoprecipitation assay revealed that
c-MYC directly binds to the promoter of NOTCH1 in
HCC cells (Supplementary Figure 11B and C). Moreover,
overexpression of activated c-MYC promoted cell pro-
liferation and restored decreased NOTCH1 expression
and cell growth caused by ABL1 knockdown in HCC
cells (Figure 5G and H). Considered altogether, these
data indicate that knockdown of ABL1 decreases
=
Figure 5. Knockdown of ABL1 decreases NOTCH1 expression
that the MYC targets are enriched in ABL1-KD Huh7 cells. (B)
scrambled-RNA and ABL1-KD HCC cells was determined by W
examined using proximity ligation assay in Huh7 cells. (D) Relati
MYC-KD HCC cells. (E) Expression of c-MYC, NOTCH1, and G
was determined by Western blotting. (F) Quantification of cell pro
Expression of MycER (activated fusion c-MYC), NOTCH1, ABL
retroviral particle) and c-MYC–overexpressed (infected with th
ABL1-KD cells was determined by Western blotting. (H) Quant
expressed Huh7 scrambled and ABL1-KD cells.
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NOTCH1 expression through regulation of c-MYC in
HCC cells.
Expression of p-ABL1, c-MYC, and NOTCH1 Is
Positively Correlated in Human Hepatocellular
Carcinoma

Our data indicate that ABL1 regulates the phosphoryla-
tion of c-MYC, leading to increased c-MYC protein levels,
which results in enhanced NOTCH1 mRNA expression and
promotes HCC cell growth (Figure 6A). To determine
whether the ABL1/c-MYC/NOTCH1 axis is also relevant in
human HCC, we examined the levels of p-ABL1 (Y412) (an
indicator of ABL1 activity), c-MYC, and NOTCH1 in human
HCC specimens using tissue microarrays. The expression of
both c-MYC and NOTCH1 proteins was significantly corre-
lated with levels of p-ABL1 in human HCC specimens
(Figure 6B–D). In addition, NOTCH1 protein expression
correlated with c-MYC in human HCC (Figure 6E). We
further analyzed the TCGA database and found that NOTCH1
mRNA level positively correlated with ABL1 mRNA level
(Figure 6F). However, c-MYC mRNA level had no correlation
with either ABL1 or NOTCH1 mRNA level in the TCGA HCC
samples (Supplementary Figure 12), suggesting that ABL1
may not regulate c-MYC at transcript level in human HCC.
Overall, these data indicate that the ABL1/c-MYC/NOTCH1
axis is important in human HCC.
ABL1 Inhibitors Suppress Hepatocellular
Carcinoma Growth in Preclinical Models

The above results encouraged us to examine whether
ABL1 inhibitors could be useful to treat HCC in preclinical
models, which would provide a translational basis for the
potential clinical use of ABL1 inhibitors in the treatment of
HCC patients. Several ABL kinase inhibitors are already
used clinically or are under investigation in clinical trials
for treating chronic myelogenous leukemia and other
cancers,4 but their efficacy in HCC remains unknown.
Nilotinib, an ATP-competitive inhibitor of ABL kinases, has
been approved by the US Food and Drug Administration to
treat Philadelphia chromosome–positive chronic myeloge-
nous leukemia.30 GNF-5, a newer allosteric inhibitor that
targets the myristate pocket of ABL kinases, has been
tested in preclinical leukemia models.31 Because ABL1
knockdown inhibits HCC cell growth (Figure 3), we
through regulation of c-MYC in HCC cells. (A) GSEA shows
Levels of c-MYC, p-c-MYC (Ser62), and GAPDH proteins in
estern blotting. (C) The interaction of ABL1 and c-MYC was
ve mRNA levels of NOTCH1 in scrambled-RNA control and c-
APDH proteins in scrambled-RNA and c-MYC-KD HCC cells
liferation from scrambled-RNA and c-MYC-KD HCC cells. (G)
1, and GAPDH proteins in control (infected with the pBpuro
e pBpuro c-MYCER retroviral particle) Huh7 scrambled and
ification of cell proliferation from in control and c-MYC-over-
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hypothesized that ABL inhibitors would be efficacious in
treating HCC. First, we confirmed that both nilotinib and
GNF-5 effectively inhibit ABL kinase activity, as indicated
by phosphorylation of CRKL in HCC cells (Supplementary
Figure 13A and B). Further, we found that both nilotinib
and GNF5 inhibited HCC cell growth in vitro (Figure 7A,
Supplementary Figures 13C and 14A). Importantly, the
sensitivity of nilotinib positively correlated with the
expression of ABL1 (Figure 7B and Supplementary
Figure 14B). We also found there is a positive correla-
tion between ABL1 and c-MYC expression in human HCC
cell lines (Supplementary Figure 14B and C). However,
there is no significant correlation between ABL1 and
NOTCH1 in these HCC cell lines (Supplementary
Figure 14B and C ), suggesting other mechanisms may
also regulate NOTCH1 expression. It is notable that
NOTCH1 expression is positively correlated with ABL1 in
HCC cells without p53 mutations (Hep3B, Huh7, SK-Hep1
and SNU-423), but there is no correlation in p53-mutant
HCC cells (SNU-449, SNU-475, PLC/PRF/5, and SNU-387),
suggesting that p53 mutations may affect NOTCH1
expression. Consistent with the functional inhibition of
ABL1 using shRNAs, nilotinib effectively decreased the
expression of c-MYC and NOTCH1 (Figure 7C). Moreover,
nilotinib significantly suppressed tumor growth
(Figure 7D–G) and proliferation (Supplementary
Figure 15A–D) in an HCC xenograft model. To further
test the efficacy of ABL inhibitors in mouse models with
intact immune responses, we injected wild-type C57BL/6
mice with MET/CAT to induce HCC and gavaged these
mice with nilotinib or vehicle solution by oral gavage daily
for 4 weeks. We found that nilotinib treatment dramati-
cally inhibited MET/CAT-induced tumor growth (Figure 7H
and I) and proliferation (Supplementary Figure 16),
decreased the expression of MYC and NOTCH1 (Figure 7J),
and prolonged the survival of animals with HCC
(Figure 7K). In contrast, sorafenib was not effective in
inhibiting MET/CAT-induced HCC growth (Supplementary
Figure 17). Taken together, these data indicate that ABL1
inhibitors effectively suppress HCC growth in preclinical
models.
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Discussion
Tyrosine kinases have been shown to be good targets for

treating cancer, including HCC. Currently, 4 of every 5 drugs
approved to treat advanced HCC are tyrosine kinase in-
hibitors.2 Despite the success of tyrosine kinase inhibitors in
treating HCC, many patients do not respond. There is
=
Figure 6. Levels of p-ABL1, c-MYC or NOTCH1 are positivel
activation (due to ABL1 overexpression or other reasons) lead
scriptional activity with respect to NOTCH1, thereby promoting
and NOTCH1 in human HCC specimens (tissue microarrays) we
c-MYC levels in human HCC specimens was analyzed. (D) Cor
imens was analyzed. (E) Correlation of c-MYC and NOTCH1 e
relation of ABL1 and NOTCH1 mRNAs in HCC samples from th
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significant genetic and biological heterogeneity in HCC. A
better understanding of tyrosine kinases in the development
HCC is necessary in order to predict response to therapy
and to develop new therapies. Only a few tyrosine kinases
have been shown to play key roles in HCC initiation and
progression.32 In this study, we found that ABL1 is over-
expressed and activated in human HCCs, and ABL1 inhibi-
tion effectively suppresses HCC growth in human and
mouse preclinical models, suggesting that inhibition of ABL1
may be a promising new strategy to treat HCC. We showed
that ABL1 inhibitors such as nilotinib significantly inhibit
HCC growth in vitro and in vivo. Our findings provide
translational support for the development of a clinical trial
to assess the safety and efficacy of nilotinib in treating HCC.

How ABL1 is activated in HCC remains unclear. MET can
bind directly to ABL1 and activate it in breast cancer cells.16

We found that ABL1 is activated in MET/CAT-induced HCC
tumors, suggesting that ABL1 might be activated by MET in
human HCC. In addition, we found that ABL1 expression
was also increased in MET/CAT-induced liver tumors.
Consistently, ABL1 mRNA expression is highly correlated
with the gene signature of activated MET in human HCC
(Supplementary Figure 18).17 Therefore, it is possible that
ABL1 mRNA expression can be up-regulated by activated
MET in HCC. SP1 can modulate ABL1 expression at the
transcription level,33 and MET can induce the phosphory-
lation of SP1 and enhance its transcriptional activity.34 Thus,
MET activation may increase ABL1 mRNA expression
through the regulation of SP1. This hypothesis will be tested
in our future studies.

For the first time, we demonstrated that the NOTCH
signaling pathway is suppressed by ABL1 knockdown in
HCC cells. NOTCH signaling is a crucial determinant of
tumor cell growth in many types of cancer, including
HCC.19 However, NOTCH inhibitors such as GSI Qcause
gastrointestinal toxicity due to its off-target effects.35 Our
data suggest a possible new strategy to inhibit the NOTCH
pathway, which would be to inhibit ABL1. As functional
inhibition of ABL1 showed low and tolerable toxicity, ABL1
inhibitors might be useful to treat HCC cases that exhibit
up-regulated NOTCH signaling. It remains to be deter-
mined whether the regulation of the NOTCH signaling
pathway by ABL1 is tissue- or cell-context–dependent. Our
findings might provide a broader application for using
ABL1 inhibitors in other type of cancers with activated
NOTCH. For example, NOTCH signaling is known to play a
critical role in intrahepatic cholangiocarcinoma.36

Currently, there are no targeted therapy options available
for intrahepatic cholangiocarcinoma. It would be intriguing
y correlated in human HCC. (A) A schematic model: ABL1
s to an increase of c-MYC protein expression and its tran-
HCC cell proliferation. (B) Levels of p-ABL1 (p-Y412), c-MYC,
re determined by IHC staining. (C) Correlation of p-ABL1 and
relation of p-ABL1 and NOTCH1 levels in human HCC spec-
xpression in human HCC specimens was analyzed. (F) Cor-
e TCGA database was analyzed.
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to test whether ABL1 inhibitors might be useful in inhib-
iting intrahepatic cholangiocarcinoma growth in future
studies.

ABL kinases function by regulating more than 100
different targets in a cell-context–specific manner, making it
difficult to select appropriate downstream targets of ABL1
for study.4 ABL1 has been reported to phosphorylate AKT
and ERK to regulate cancer cell proliferation and survival.37

However, ABL1 knockdown did not affect phosphorylation
of either AKT or ERK in HCC cells (Supplementary
Figure 19), which supports the concept that ABL1’s regu-
lation of different targets is cell-context–dependent. We
found that ABL1 knockdown decreases c-MYC protein
expression and further demonstrated that decreased c-MYC
results in reduced NOTCH1 expression in HCC cells. These
data reveal a novel mechanism by which ABL1 promotes cell
growth in HCC. c-MYC is a well-known proto-oncogene that
plays a critical role in many cancers, including liver can-
cer.38 However, it is still currently “untargetable” clinically.
Our results suggest that inhibition of ABL1 might be useful
to treat HCC cases demonstrating high expression of c-MYC.
Although c-MYC is a direct transcriptional target down-
stream of NOTCH1 in T-ALL,27 our data suggest that c-MYC
may not be regulated by NOTCH1 in HCC cells. This is not
particularly surprising, as NOTCH1 regulates different tar-
gets in tissue- and cell-context–dependent manners.39 It
remains unknown whether c-MYC regulates NOTCH1 in
other contexts, as this mechanism has not been reported
previously. It will be instructive to examine whether this
regulation occurs in other cancers. Besides the c-MYC/
NOTCH1 axis, we also identified other signaling pathways
regulated by ABL1 in HCC cells through RNA sequencing
analysis. The gene sets that are most significantly down-
regulated by ABL1 knockdown include hypoxia, the p53
pathway, glycolysis, and androgen response
(Supplementary Figure 20), which have been shown to
regulate tumor growth and progression.40–43 It is possible
that ABL1 promotes HCC development through regulation of
these signaling pathways, and we plan to investigate this in
our future studies.

In conclusion, our study shows that ABL1 plays a
critical role in the development of HCC by regulating the c-
MYC/NOTCH1 axis. Inhibition of ABL1 represents a
promising new strategy to treat HCC in patients who
overexpress this protein-tyrosine kinase. A number of ABL
kinase inhibitors have been developed and are being used
clinically for leukemia and gastrointestinal stromal tumors.
=
Figure 7. ABL1 inhibitors suppress human HCC growth in vitro
treated with vehicle or nilotinib at different dose after 48 hou
sensitivity to nilotinib in HCC cells described in (A). (C) Levels of
treated with vehicle or 5 mM nilotinib for 24 hours. (D) SCID-bg
nilotinib for 10 days and tumor volumes from mice (n ¼ 5/group
nilotinib-gavaged animals are shown. (F) Tumor weights from
nilotinib treatment. (H) C57BL/6 mice were injected with MET/C
were gavaged with vehicle or nilotinib for 4 weeks (some mice t
burdens), and gross images of livers from vehicle- and nilotin
shown. (I) Liver/body weight ratios from the mice (n ¼ 6/group).
proteins in the mouse livers from (H). (K) Survival graphs for mi

FLA 5.6.0 DTD � YGAST63271_proof
These inhibitors might also prove to be useful in treating
HCC, especially in patients showing overexpression and/or
activation of ABL1.
Supplementary Material
Note: To access the supplementary material accompa-
nying this article, visit the online version of Gastroen-
terology at www.gastrojournal.org, and at http://dxdoi.
org/10.1053/j.gastro.2020.03.013.
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Supplementary Experimental
Procedures
Cells and Reagents

Huh7, Hep3B, PLC/PRF/5, Skep-1, and 293T cells were
cultured in Dulbecco’s modified Eagle’s medium (high-
glucose; Thermo Scientific, Waltham, MA), supplemented
with 10% fetal bovine serum (Tissue Culture Biologicals,
Tulare, CA), penicillin, and streptomycin (Sigma-Aldrich) in
a humidified atmosphere of 5% CO2 at 37�C. SNU387,
SNU423, SNU449, and SNU475 were cultured in RPMI-1640
medium supplemented with 10% fetal bovine serum (Tis-
sue Culture Biologicals) and 1� penicillin/streptomycin
(Sigma-Aldrich) at 37�C and 5% CO2.

The Cancer Genome Atlas Data Analysis
The data for all boxplots and correlation plots were

retrieved from the UCSC Xena platform (https://xenabrowser.
net/), specifically from the TCGA Liver Cancer (LIHC) study.
For the first variable, the data type selected was “Genomic”
and the assay type selected was “Gene Expression.” For the
second variable, the data type selected was “Phenotypic.” To
create the boxplots in R software, version 3.6.0, gene expres-
sion values were first separated into the categories “normal
tissue,” consisting of solid tissue normal samples, and “tumor
tissue,” consisting of primary tumor and recurrent tumor
samples. These sorted data were then plotted using the func-
tion boxplot. P values were generated using Welch’s t test on
2-sample, unpaired data. Normality required for all t tests was
assumed by central limit theorem and visual inspection of
boxplots. The correlation plots were created using GraphPad
Prism software, version 8.0.1. The Pearson’s coefficient of
correlation, R, and its respective P value (2-tailed) were also
calculated using GraphPad Prism software, version 8.0.1.

The data for Kaplan-Meier plots were retrieved from the
pathology atlas section of the Human Protein Atlas (https://
www.proteinatlas.org/humanproteome/pathology). Liver
cancer TCGA RNA sample, description, and FPKM data were
used for each individual gene. To create the Kaplan-Meier
plots, Python software, version 3.0 was used to modify the
original data from the Pathology Atlas. Specifically, censored
data were generated by dividing patients into 2 groups in
which the censored group consisted of patients who had not
died by the end of the study time. Patient data were also
separated into 2 different groups based on the expression
level indicated by FKPM values, for which the dividing
threshold was provided by the Pathology Atlas. Binary
censored data, binary expression group data, and survival
times were imported into R software, version 3.6.0, where
Kaplan-Meier plots were created using the survival, surv-
miner, dplyr packages and the Surv, survfit, and ggsurvplot
functions. P values were generated by including the com-
mand “pval ¼ TRUE” in the ggsurvplot function from the
survminer library. Based on the FPKM value of each gene,
patients were classified into 2 groups and association be-
tween prognosis (survival) and gene expression (FPKM) was
examined. The best expression cutoff refers the FPKM value

Supplementary References
1. Patil MA, Lee SA, Macias E, et al. Role of cyclin D1 as a

mediator of c-Met- and beta-catenin-induced hep-
atocarcinogenesis. Cancer Res 2009;69:253–261.

2. Shang N, Arteaga M, Zaidi A, et al. FAK is required for c-
Met/beta-catenin-driven hepatocarcinogenesis. Hep-
atology 2015;61:214–226.

that yields maximal difference with regard to survival be-
tween the 2 groups at the lowest log-rank P value. Best
expression cutoff was selected based on survival analysis. If
FPKM values were greater than or equal to the best expres-
sion cutoff value, they were defined as high. If they were
lower than this they were defined as low. We also used the
median (50%) group cutoff method and found similar results.

MET/CAT-Induced Hepatocellular Carcinoma
Model

For the MET/CAT-driven HCC model, 50 mg of total
plasmids, encoding the Sleeping Beauty transposase (HSB2)
and transposons with GFP (pT3-GFP) or MET gene and
catenin b1 gene with the N-terminal truncation (referred to
here as MET/CAT) (22.5 mg pT3-EF1a-MET, 22.5 mg pT3-
EF1a-DN90-b-catenin, and 5 mg HSB2) were injected hy-
drodynamically into age- and sex-matched mice as
described previously.1,2 All mice were maintained on the
standard diet until being euthanized.

Proximity Ligation Assay
Proximity ligation assay was performed using the Duo-

link In Situ Red Starter Kit Mouse/Rabbit (MilliporeSigma)
according to the manufacturer’s instructions. In brief, cells
were seeded onto an 8-well-Nunc Lab-Tek II CC2 Chamber
Slide System (Thermo Fisher) at 17.5 � 103/well overnight,
then fixed with 4% paraformaldehyde for 30 minutes at
room temperature and washed in phosphate-buffered sa-
line, followed by permeabilization with 0.1% Triton X-100
for 10 minutes. After washing with Wash Buffer A (Milli-
poreSigma) followed by blocking with Duolink Blocking
Buffer (MilliporeSigma) for 30 minutes at room tempera-
ture, cells were incubated with primary antibodies (ABL1, #
2862, 1:100; Cell Signaling and c-MYC, #5605, 1:100; Cell
Signaling) overnight at 4�C. The following day, cells were
washed repeatedly in Wash Buffer A, followed by incubation
with appropriate Duolink secondary antibodies (Milli-
poreSigma) for 1 hour at 37�C. According to the manufac-
turer’s protocol. After washing with Wash Buffer A at room
temperature, ligation, and amplification steps of the prox-
imity ligation assay were performed according to the man-
ufacturer’s protocol. After final washes with Wash Buffer B
at room temperature, slides were mounted with Corning
24 � 50 mm Rectangular #1 Cover Glass (Corning, Corning,
NY) using Duolink In Situ Mounting Medium with 40,6-
diamidino-2-phenylindole (MilliporeSigma).
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Supplementary Table 1.Sequences of Short Hairpin RNAs Used

Target Sequences

Human-shABL1-1 CCGGGAGTTCTTGAAGCATTTCAAACTCGAGTTTGAAATGCTTCAAGAACTCTTTTTG
Human-shABL1-2 CCGGGCTTTGGGAAATTGCTACCTACTCGAGTAGGTAGCAATTTCCCAAAGCTTTTTG
Human-shNOTCH1 CCGGCTTTGTTTCAGGTTCAGTATTCTCGAGAATACTGAACCTGAAACAAAGTTTTT

Supplementary Table 2.Primary Antibody Information

Antibody Cat no. Company

ABL1 2862 Cell Signaling
p-ABL1 (Tyr412) 2865 Cell Signaling
Phospho-AKT (Ser473) 4060 Cell signaling
AKT 9272 Cell Signaling
Phospho-ERK(Thr 202/Tyr 204) 4370 Cell Signaling
ERK 4695 Cell Signaling
NOTCH1 3608 Cell Signaling
Phospho-c-Myc (Ser62) 13748 Cell Signaling
c-MYC 5605 Cell Signaling
CRKL 3182 Cell Signaling
p-CRKL (Tyr207) 3181 Cell Signaling
GAPDH G8795 Sigma
Ki67 RM-9106-S0 Fisher Scientific
NOTCH3 23426 Abcam
AFP A0008 Dako

Supplementary Table 3.Primer Sequences Used for Reverse
Transcription Polymerase Chain
Reaction

Gene Sequences

GAPDH-F 50-CTCTGGAAAGCTGTGGCGTGATG-30

GAPDH-R 50-ATGCCAGTGAGCTTCCCGTTCAG-30

NOTCH1-F TGGACCAGATTGGGGAGTTC
NOTCH1-R GCACACTCGTCTGTGTTGAC
NOTCH3-F CGTGGCTTCTTTCTACTGTGC
NOTCH3-R CGTTCACCGGATTTGTGTCAC
JAG1-F GTCCATGCAGAACGTGAACG
JAG1-R GCGGGACTGATACTCCTTGA
LFNG-F GTCAGCGAGAACAAGGTGC
LFNG-R GATCCGCTCAGCCGTATTCAT
DTX1-F GACGGCCTACGATATGGACAT
DTX1-R CCTAGCGATGAGAGGTCGAG
CCND1-F GCTGCGAAGTGGAAACCATC
CCND1-R CCTCCTTCTGCACACATTTGAA
Hes1-F CCTGTCATCCCCGTCTACAC
Hes1-R CACATGGAGTCCGCCGTAA
Hes2-F CCAACTGCTCGAAGCTAGAGA
Hes2-R AGCGCACGGTCATTTCCAG
NRARP-F TCAACGTGAACTCGTTCGGG
NRARP-R ACTTCGCCTTGGTGATGAGAT
NOTCH1 promoter-F GAGCGCAGCGAAGGAACGA
NOTCH1 promoter-R TCTCTTCCCCGGCTGGCT
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Supplementary Figure 1. High expression of ABL1 in human
HCCs is positively correlated with poorer patient prognosis.
Kaplan-Meier plot of overall survival of HCC patients stratified
by ABL1 mRNA expression level from TCGA database.
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Supplementary Figure 2. Deletion of Abl1 in hepatocytes does not affect morphology, histology, proliferation, or apoptosis in
mouse liver. (A) Genotyping of Alb-Cre, Alb-Cre; Abl1flox/þ, and Alb-Cre; Abl1flox/flox mice. (B) Protein expression of ABL1 and
GAPDH in whole liver tissues and isolated hepatocytes of Alb-Cre (HepWT) and Alb-Cre; Abl1flox/flox (HepAbl1–/–) mice was
determined by Western blotting. (C) Photographs of livers from HepWT and HepAbl1–/– mice at 7 weeks of age. (D) Repre-
sentative pictures of H&E-stained sections for (C). (E) Hepatic proliferation in the livers of 7-week-old HepWT and HepAbl1–/–

mice was examined by immunohistochemistry for Ki67 protein expression. (F) Quantification of Ki67 staining (n ¼ 4). (G)
Hepatic apoptosis in the livers of 7-week-old HepWT and HepAbl1–/– mice was examined by TUNEL staining. (H) Quantification
of TUNEL staining for (G) (n ¼ 4).
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Supplementary Figure 6. Knockout of ABL1 decreases
expression of NOTCH1 targets in MET/CAT-induced HCC
tumors. (A–C) Relative CyclinD1, Nrarp, and Hes1 mRNA
levels in whole livers of HepWT and HepAbl1–/– mice treated
with pT3-GFP or MET/CAT for 9 weeks was determined by
real-time polymerase chain reaction.

Supplementary Figure 3. ABL1 is not activated in diethylni-
trosamine (DEN)-induced HCC tumors. Expression of p-
ABL1, ABL1, and GAPDH proteins in the livers of wild-type
C57B6/J male mice 10 months after injection of DEN.
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Supplementary Figure 4. Comparable transfection efficiency
of hydrodynamic injection in WT and Abl1-KO mouse liver. (A)
GFP expression in the livers of 7-week-old HepWT and HepAbl1–/
– mice (n ¼ 3/group) was examined by immunohistochemistry 7
days after injection of pT3-GFP. (B) Quantification of GFP
staining (n ¼ 3/group).
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Supplementary Figure 5. ABL1 is expressed in HCC cells.
Relative ABL1 mRNA levels in a number of HCC cell lines
were examined by real-time polymerase chain reaction.
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Supplementary Figure 7.miRs may not contribute to regulation of NOTCH1 by ABL1. (A) RelativemiR-150-5pmRNA levels in
scrambled-RNA and ABL1-KD Huh7 cells. (B) Relative miR-34a-5p mRNA levels in scrambled-RNA and ABL1-KD Huh7 cells.
(C) Relative miR-146b-5p mRNA levels in scrambled-RNA and ABL1-KD Huh7 cells. (D) Relative miR-146b-5p levels in Huh7
cells treated with miR146b-bp-mimic at different concentrations. (E) Relative miR-146b-5p levels in Huh7 cells treated with
miR146b-bp inhibitors at different concentrations. (F) Expression of NOTCH1 and GAPDH proteins in Huh7 cells treated with
control or miR146b-5p-mimic for 24 hours. (G) Expression of NOTCH1 and GAPDH proteins in scrambled-RNA and ABL1-KD
Huh7 cells treated with control or miR146b-5p inhibitors for 24 hours.
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Supplementary Figure 8. Knockout of ABL1 decreases
expression of c-MYC in MET/CAT-induced HCC tumors. c-
MYC expression in whole livers of HepWT and HepAbl1–/– mice
treated with pT3-GFP or MET/CAT for 9 weeks was deter-
mined by Western blotting.

Supplementary Figure 9. ABL1 interacts with c-MYC in HCC
cells. The interaction of ABL1 and c-MYC was examined
using proximity ligation assay (PLA) in Huh7 cells. PLA puncta
per cell was quantified using Image J software (National In-
stitutes of Health, Bethesda, MD).

Supplementary Figure 10. Neither knockdown nor over-
expression of NOTCH1 affects expression of c-MYC protein
in HCC cells. Expression of c-MYC, NOTCH1, and GAPDH
proteins in Huh7 cells infected with scrambled-shRNA,
NOTCH1-shRNA, EF.CMV.GFP (control), or
EF.hICN1.CMV.GFP (NOTCH1-OE).
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Supplementary
Figure 11. c-MYC directly
binds to the promoter of
NOTCH1 in human HCC
cells. (A) Putative transcrip-
tion factor binding sites hu-
man NOTCH1 promoter
were analyzed by TFsearch
software. (B) Chromatin
immunoprecipitation (ChIP)
polymerase chain reaction
(PCR) analysis reveals the
binding of c-MYC to the
NOTCH1 promoter in Huh7
cells. (C) ChIP- quantitative
PCR analysis reveals the
binding of c-MYC to the
NOTCH1 promoter in Huh7
cells.
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Supplementary Figure 12. c-MYC mRNA level has no cor-
relation with ABL1 or NOTCH1 mRNA levels in TCGA HCC
samples. (A) Correlation of c-MYC and ABL1 mRNA in HCC
samples from the TCGA database was analyzed. (B) Corre-
lation of c-MYC and NOTCH1 mRNAs in HCC samples from
the TCGA database was analyzed.
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Supplementary
Figure 13. ABL inhibitors inhibit
HCC cell growth. (A) Expres-
sion of p-CRKL (a direct target
of ABL1), CRKL, and GAPDH
proteins in Hep3B and Huh7
cells treated with vehicle or 3
mM nilotinib for 4 hours or 24
hours. (B) Expression of p-
CRKL, CRKL, and GAPDH
proteins in Huh7 cells treated
with vehicle or 20 mM GNF5 for
4 hours or 24 hours. (C) Quan-
tification of cell proliferation of
Hep3B and Huh7 cells treated
with vehicle or GNF-5 at
different time points after
treatment.
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Supplementary
Figure 14. Nilotinib treat-
ment decreases HCC cell
growth. (A) 50% inhibitory
concentration (IC50) for
nilotinib in 8 HCC cell lines
was calculated for cell
growth experiment
described in Figure 7A using
nonlinear regression. (B)
Expression of ABL1, c-MYC,
NOTCH1, and GAPDH pro-
teins in 8 HCC cells. (C)
Correlation between c-MYC
(left) and NOTCH1 (right)
protein expression and
ABL1 protein expression in 8
HCC cell lines. (D) Correla-
tion between NOTCH1 pro-
tein expression and ABL1
protein expression in HCC
cells with or without p53
mutations.
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Supplementary
Figure 16. Nilotinib treatment
decreases HCC cell prolifera-
tion in the MET/CAT model. (A)
Diagram of the experimental
protocol. (B) Ki67 and AFP
staining of tumors induced by
MET/CAT treated with vehicle
or nilotinib was examined by
IHC.
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Supplementary
Figure 15. Nilotinib treat-
ment decreases HCC cell
proliferation in a xenograft
model. (A) Ki67 staining of
tumors from Huh7 cells
treated with vehicle or nilo-
tinib was examined by IHC.
(B) Quantification of Ki67
staining (n ¼ 3/group). (C)
TUNEL staining of Huh7
xenograft tumors treated
with vehicle or nilotinib was
examined by IHC. (D)
Quantification of TUNEL
staining (n ¼ 3/group).
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Supplementary
Figure 17. Sorafenib is not
effective in suppressing tumor
growth in the MET/CAT-
induced HCC model. (A) Dia-
gram of the experimental
protocol. (B) Gross images of
tumors from vehicle- (left) and
sorafenib-treated animals (right)
are shown. (C) Body weight ra-
tios of mice after/before sor-
afenib treatment (n ¼ 6/group).
(D) Kaplan-Meier survival graph
for mice treated with vehicle or
sorafenib (n ¼ 6/group).
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Supplementary
Figure 18. ABL1 expression is
correlated with expression of c-
MET–activated genes. Correla-
tion between ABL1 mRNA
expression and the expression
of genes (FGD6, ITGB1, ITGAV,
NCK2, ANXA5, and KPNB1)
from “the c-MET activation
gene set” in human HCCs from
TCGA database.
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Supplementary Figure 19. Neither knockdown nor over-
expression of NOTCH1 affects phosphorylation of AKT or
ERK in HCC cells. Expression of p-AKT, AKT, p-ERK, ERK,
ABL1, p-CRKL, and GAPDH proteins in Huh7 cells infected
with scrambled-RNA or ABL1-KD Huh7 cells.
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Supplementary
Figure 20. ABL1 knockdown
down-regulates a number of
signaling pathways. GSEA re-
veals down-regulation of
several gene sets, including
hypoxia, the p53 pathway, es-
trogen response, glycolysis,
androgen response, and sper-
matogenesis by knockdown of
ABL1 in Huh7 cells.
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