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ABSTRACT 

Aldehyde oxidase (AOX) is a drug metabolizing molydbo-flavoenzyme that has gained 

increasing attention because of contribution to the biotransformation in phase I 

metabolism of xenobiotics. Unfortunately, the intra- and inter-species variations in AOX 

activity and lack of reliable and predictive animal models make evaluation of AOX-

catalyzed metabolism prone to be misleading. In this study, we developed an improved 

computational model integrating both atom-level and molecule-level features to predict 

whether a drug-like molecule is a potential human AOX (hAOX) substrate and to identify 

the corresponding sites of metabolism. Additionally, we combined the proposed 

computational strategy and in vitro experiments for evaluating the metabolic property of 

a series of epigenetic-related drug candidates still in early stage of development. In 

summary, this study provides an improved strategy to evaluate the liability of molecules 

toward hAOX and offers useful information for accelerating the drug design and 

optimization stage.
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INTRODUCTION

Aldehyde oxidase (AOX), a drug metabolizing molybdo-flavoenzyme distributing mainly in 

mammal cytoplasm, has broad substrate specificity and capability to catalyze the metabolism of 

various endogenous and exogenous transformation, including oxidation of aldehydes and nitrogen-

containing heterocycles,1 hydrolysis of amides,2 reduction of N-oxides and S-oxides.3-4 AOX 

widely distributes with profound species differences in vivo and plays an important role in phase 

I metabolism of xenobiotics. It has been reported that AOX contributes to clinical failures by 

metabolizing molecules with N-containing heterocyclic aromatic ring, in which the aromatic N is 

introduced to stabilize the metabolism by CYP-450s and consequently increase the susceptibility 

to hAOX.5 Ever-growing small molecule candidates have failed due to hAOX-mediated oxidative 

metabolism.6 For example, INC280 (Capmatinib), PF-04217903, SGX-523 and others have been 

terminated during early phase of clinical trials due to AOX-catalyzed biotransformation.3, 6-7 

However, the different experimental medium or poor in vitro-in vivo extrapolation may 

significantly influence the estimation of hAOX-mediated metabolism, not to mention the 

uncertainty caused by species differences. Under these circumstances, computational modeling 

can be considered as a complementary strategy to predict hAOX metabolic profiles with 

homologous experimental data. 

Recently, Manevski et al. discussed thoroughly about the biological functions, catalytic 

mechanism, experimental assessment and the rational drug design approaches to modulate AOX-

mediated metabolism in drug design and discovery.3 The structure of hAOX contains three 

domains: (1) The flavin adenine dinucleotide (FAD) domain, (2) two [2Fe-2S] redox domain and 

(3) the molybdenum cofactor (MoCo) and substrate binding domain.8 The three domains are 
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essential for hAOX-mediated biotransformation of substrate.9 Several studies have been reported 

about the mechanism of hAOX-catalyzed oxidation of azaheterocycle molecules,10-12 which can 

be briefly summarized as follows: (1) The nucleophilic attack at the electron deficient C of the 

substrate is initialized by the hydroxyl of the MoCo; (2) The H attached to the electron deficient 

C transfers to the S of MoCo simultaneously, and then the substrate binds to the MoCo by forming 

the C-O-Mo bond;10 (3) The electron deficient C is nucleophilically attacked by one water 

molecule from solvent, and the substrate is released as an oxidation product.13 The proposed 

mechanism of AOX-mediated oxidation was included in the Figure 1.

Figure 1. The scheme showing the proposed mechanism of AOX-mediated oxidation. PDB 

structure used for illustration is 4UHX,9 and the substrate is phthalazine.
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Inspired by the catalytic mechanism of the hAOX mediated metabolism, several in silico models 

have been reported to predict whether a molecule can be metabolized by hAOX and where its 

potential sites of metabolism (SOMs) locate in the structure. Torres et al. used the energy of the 

tetrahedral intermediate formation to predict the regioselectivity in hAOX-catalyzed 

metabolisms.10 Dalvie et al. employed a similar strategy to predict the structure-metabolism 

relationship (SMR) for zoniporide analogues.14 They proposed that the energies of formation of 

tetrahedral intermediates could establish a possible relationship with the occurrence of a 

nucleophilic attack, as well as the electrostatic potential (ESP) charge of the carbon adjacent to the 

nitrogen atom and the energy of lowest unoccupied molecular orbital (ELUMO). Besides, Jones et 

al. used the energy of the tetrahedral intermediate and steric hindrance as two descriptors to predict 

the intrinsic clearance for eight drugs metabolized by hAOX.15 Based on similar descriptors, we 

constructed a decision tree model to predict the susceptibility of molecules toward hAOX.6 More 

recently, Lepri et al. experimentally evaluated a large amount of small molecules containing 

hAOX-substrate-like motifs and summarized the general SMR rules for hAOX mediated 

metabolism.16 Their work proposed that the electronic and exposure effects were two important 

features and mutually influenced, in which the electronic effects were calculated using density 

functional theory and exposure effects were assessed by molecular docking analysis to consider 

the ligand exposure in hAOX catalytic site. Montefiori et al. explored the regioselectivity of a 

series of 6-Substituted 4-Quinazolinones using the concerted mechanism as a reactive model.12 

Their results indicated that the stability of the hydroxylated tetrahedral intermediate could be used 

to determine whether a site in the AOX substrate was a likely SOM. In their study, the ESP charge 

of the electron deficient C showed good correlation with the stability of the hydroxylated 

tetrahedral intermediate, which could be used to separate the SOMs and nonSOMs.12 Cruciani et 
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al. developed a probability function for hAOX-metabolized oxidation with 88% prediction 

accuracy based on a large set of homogeneous experimental data, in which both exposure and 

electrophilic effects were taken into account.17 Furthermore, Montefiori et al. collected a dataset 

of 78 substrates with known SOMs information and constructed models to predict the AOX-

mediated SOMs, in which the importance of the chemical shift and ESP charge of the deficient C 

of SOMs were highlighted.18  

In our previous work, the reaction energy barrier (ΔEinter) and steric hindrance (Steric) were 

adopted to predict the potential SOMs of the molecules toward hAOX-mediated metabolism. As 

the results illuminated, the DTAOX model exhibited good predictive performance and gave clear 

explanation of the relationship between the exposure, reaction energy barrier effects and the 

hAOX-mediated metabolism.6 Consequently, the recently published hAOX-mediated oxidative 

metabolism data was used to evaluate the previous published DTAOX model including 

substrate/nonsubstrate data.16-17 The sample distribution was calculated, and more than half of 

these recently published data falling outside of the applicability domain (AD) defined by DTAOX.6 

As a result, the model yielded a lower recall rate (alternately named as the sensitivity score, SE) 

of 0.74, a specificity score (SP) of 0.64. Clearly, DTAOX needs to be improved to predict whether 

a molecule was a true substrate, and to identify the potential metabolic site toward hAOX-mediated 

oxidative metabolism. Checking the incorrect predictions, we further noticed that DTAOX also 

failed to recognize the potential SOM with similar scaffolds. For example, the tendency toward 

hAOX of position 2 in quinoline analogues were indistinguishable to the model, because these 

sites showed similar reaction energy barrier and steric hindrance, as illustrated in Figure 2. Among 

these quinoline analogues, only MOL038 was a hAOX substrate, and the other three were all 

mistaken by DTAOX for substrates. Apparently, more features  are needed to capture the substituent 
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differences in these similar molecules. Similar observations were also reported by Cruciani et al,17 

although the 5-nitro-phthalazine, 5-amino-phthalazine and phthalazine were analogues with only 

different substituents at same position of phthalazine, these compounds exhibited different 

relationship with the empirical SMR concluded by Lepri et al.16-17 In addition, DTAOX was also 

evaluated toward the newly published data with known hAOX-catalyzed oxidative sites within the 

applicability domain.7, 19 As summarized in Table S1, the low sensitivity score suggested that many 

SOMs were mispredicted to be negative by the model.

Figure 2. Site of metabolism prediction results of four quinoline analogues by DTAOX 

model. The position 2 in these quinoline analogues are marked as black asterisk. Pred.: 

prediction results.

Above retrospective analyses revealed that our previous computational model DTAOX trained 

using small data set has narrow applicability domain and insufficient generalization performance. 

In this context, more data and more global and local features need to be considered to improve the 

model. Several works have been published to predict the metabolizing enzyme mediated metabolic 

selectivity by constructing machine learning models with impressive predictive performance. For 

example, Peng et al. predicted UGT-catalyzed metabolism by constructing SVM classification 

model and identified 84% of experimentally observed sites of metabolisms for an external test.20 
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A multitask deep autoencoder neural network model was developed by Li et al. to predict the 

inhibitors of five major isozymes of CYP450 and outperformed traditional machine learning 

methods.21 The recently published homogenously hAOX-mediated experimental data and 

structurally diverse molecules have laid a solid foundation for constructing a more accurate hAOX-

mediated drug metabolism model.

There are two objectives of this study, (1) to accurately predict whether the molecule is hAOX 

substrate, and (2) to predict where the SOMs are located, i.e., to identify the specific site(s) within 

substrates that is metabolized by hAOX. First, the structurally diverse, experimental homogeneous 

dataset were collected from the latest published literature. Second, the molecular and atomic 

properties including topological, physicochemical and electronic descriptors were calculated, and 

the descriptors were combined to construct the substrate/nonsubstrate classification model. Third, 

the selected key descriptors were combined to optimize the SOMs classification model. Fourth, 

external test sets were used to verify the generalization ability of the substrate/nonsubstrate and 

SOMs classification model. In the end, the epigenetics-related inhibitors containing hAOX-

substrate-like motifs were predicted using the combined model and in vitro experiments were 

carried out for further validation.

RESULTS AND DISCUSSION

hAOX-catalyzed Oxidation: A View from Molecular Level to Atomic Level

Usually, some physical-chemical properties such as logP and logD are the important factors to 

discriminate whether a molecule is a cytochrome P450 substrate or not.22 However, for hAOX 

substrates and nonsubstrates, their physical-chemical properties are of less discriminatory power.17 
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As mentioned above, a variety of computational models have been developed to predict the hAOX- 

catalyzed metabolism. Based on homogenously hAOX-mediated experimental data with 

structurally diverse skeletons recently published, we herein studied whether there were individual 

topological and electronic features could determine the regioselectivity of hAOX-mediated 

metabolism.

As shown in Figure 3, the hAOX substrates have broad substrate specificity with widely 

different molecular size and geometry. Taking the distribution of molecular volume as an example, 

we may find from Figure 3A that the interquartile range of hAOX substrates is from 230 to 345. 

This value is wider than that of a few major isoforms of CYP450s with substrate specificity, such 

as CYP1A2, CYP2D6 and CYP2C19.23 Besides, the molecular weights showed similar 

distribution among substrates and nonsubstrates, as well as the molecular volume and molecular 

surface area (Figure 3A). Consequently, it is difficult to estimate whether a molecule is a hAOX 

substrate according to the molecular weight or molecular surface area. Since the hAOX-catalyzed 

oxidation of azaheterocycles involves the nucleophilic attack initialized by the MoCo to the 

molecule, the lower molecular electrophilicity might decrease the liability of a molecule toward 

the hAOX metabolism. In other words, the substrate might have higher electrophilicity than 

nonsubstrate, which might promote the nucleophilic attack by MoCo. In particular, the interaction 

of the highest occupied molecular orbital (HOMO) of the nucleophile with the lowest unoccupied 

molecular orbital (LUMO) of the electrophile is essential for bond formation.24 For hAOX-

catalyzed reaction, the reactant with lower ELUMO could be more electrophilic and thus more 

susceptible to hAOX. Dalvie et al. have verified the correlation between ELUMO and hAOX-

mediated susceptibility of zoniporide analogues.14 In addition to ELUMO, some other properties like 

electronegativity,25 hardness26 and ESP properties have also been used to explore the nucleophilic 
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10

attack reaction.24 Accordingly, we calculated these electronic descriptors of reactivity or properties 

that determined the electrophilicity of the molecules, including: ELUMO, electronegativity, hardness 

and the maximum and minimum ESP energies. For the electronic properties like ELUMO, 

electronegativity and hardness, there were no significant difference between substrates and 

nonsubstrates (Figure 3B, D). As for the ESP properties, several studies demonstrated that the 

partial charges such as MK charge or ESP partial charge of the metabolic sites, namely the 

electron-deficient carbon adjacent to the nitrogen, were more positive than nonSOMs.12, 16, 18 

Because the ESP partial charge of the atom was the integral of electrostatic potential surface on 

the atom, and for the nitrogen-containing heterocycle rings, the more positive charge of the SOMs 

might implicate the higher value of the ESP energy. Thus, we speculated that the substrate might 

have the higher maximum values of the ESP energies (Max_ElPot) on the electrostatic potential 

maps or the nonsubstrates might have the lower minimum values of the ESP energies (MIN_ElPot) 

on the electrostatic potential maps. However, as shown in Figure 3C, D, for these properties there 

was no significant difference between the substrates and nonsubstrates either.
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11

Figure 3. The distribution of topological and electronic descriptors between substrates and 

nonsubstrates. A: the distribution of molecular weight (unit: amu), molecular volume (unit: Å3) 

and molecular surface area (unit: Å2). B: the distribution of the energy of lowest unoccupied 

molecular orbital (ELUMO) (unit: eV), the molecular electronegativity (unit: eV) and molecular 

hardness (unit: eV). C: the distribution of the maximum and minimum values of the ESP energies 

(kJ/mol) as mapped onto the electrostatic potential maps, denoted as Max_ElPot and Min_ElPot, 

respectively. Blue and orange colors represent the substrates and nonsubstrates, respectively. D: 

the p_value of corresponding descriptors in Figure 3A, 3B and 3C.

For these topological or electronic features, we found that there was no significant distribution 

between hAOX substrates and nonsubstrates, highlighting the following two points: 1. The hAOX 

possessed a broad range of substrate specificity and regioselectivity for oxidation of nitrogen-

containing heterocycles. 2. For some electronic features like the ELUMO, the correlation might only 
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12

exist in a specific scaffold, but it might diminish when given a large set of structurally diverse 

molecules. Similar situations also appeared in the Dalvie et al.’s and Torres et al.’ work.3, 10, 14 

Therefore, these results indicated that we need to further explore the correlation of other features 

between published SOMs and nonSOMs.

Next, we compared the distribution of the local property related to the SOMs and nonSOMs. 

Overall, the descriptors explored three types of effects, including: the reactive energy barrier 

(ΔEinter), hindrance effects (Steric, exposed area of reactive atoms), and electronic effects (ESP 

charge and chemical shift of reactive atoms). Unlike the properties of molecular level, the 

distribution differences of atomic descriptors were significant in most instances (Figure 4, Table 

S2). First of all, the ΔEinter representing the reaction energy barrier had the highest significance 

with p_value ~ 10-36 (Figure 4, Table S2). Chemical shift, ESP charge and exposed area properties 

on the reactive carbon were more discriminating than those on the hydrogens attached to the 

carbon. In contrast, the distribution of chemical shift and ESP charge of the electron-rich nitrogen 

showed less significant difference, except for the exposed area (Figure 4, Table S2). The statistical 

data of the distribution of these calculated descriptors are listed in Table S2.
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13

Figure 4. The distribution of some energy-related, hindrance effect related and electronic 

descriptors between SOMs and nonSOMs. The notation of these descriptors is listed following 

the order from left to right: ΔEinter: the energy changes between prototype and the tetrahedral 

intermediate; Steric: steric hindrance; ESP: electrostatic potential charge; CS: chemical shift; 

EA: exposed area. The prefix N_, C_ or H_ represent the electron-rich nitrogen, electron-

deficient carbon and hydrogen attached to the electron-deficient carbon atoms, respectively. 

P_value of the descriptors between SOMs and nonSOMs was calculated using T-test statistical 

hypothesis. The corresponding significance of each descriptor is depicted as black asterisk within 

the underlying range: (∗) 10-5 < p < 0.05; (∗∗) 10-15 < p < 10-5; (∗∗∗) p < 10-15. Blue and orange 

colors represent the SOMs and nonSOMs, respectively. Note that all these descriptors were 

normalized using StandardScaler implemented in Scikit-learn v0.21.3.
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The reaction energy barrier that determines whether a reaction occurs or not has been adopted 

to discriminate the hAOX-mediated metabolism by many researches.6-7, 10 From the above 

analysis, we might find that the relative energy between the substrate and the intermediate (ΔEinter) 

indeed showed significant differences on the two classes. In addition, the chemical shift and ESP 

charge of the electron-deficient carbon of the SOMs also showed different distributions. 

Montefiori et al. have proposed that the ESP charge and chemical shift of the reactive carbon had 

certain correlation with the energies of the transition states and were good discriminators to predict 

the SOMs.12, 18 Here, we also explored the relationship of ESP charge and chemical shift of the 

reactive carbon with the ΔEinter but the results were not in concert with the Montefiori et al.’s 

(Figure S2). Additionally, we also discovered that the properties of the hydrogen adjacent to the 

aromatic carbon showed significant differences (Figure 4, Table S2). There have been reports 

demonstrated that hydride displacement for a substrate might be a rate-limiting step.27 Attention 

has been drawn to investigate the thermodynamics of the hydride extraction step but the exposed 

effect of this hydrogen has not yet been explored.17

Overall, from molecular level to atomic level, these statistical results highlighted that the hAOX 

had quite wide substrate selectivity and diversity, and the common electrophilic descriptors like 

ELUMO, electronegativity and others showed less significant relationship with the tendency toward 

hAOX-mediated metabolism. As for the discrimination between SOMs and nonSOMs, the local 

features such as the reaction energy between substrate and tetrahedral intermediate, properties of 

aromatic carbon and adjacent hydrogen were important. Based on these analyses, we next proposed 

a new scheme to predict whether the molecule was a hAOX substrate and its regioselectivity of 

metabolism.

Construction of the Substrate/Nonsubstrate Classification Model
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As mentioned above, the decision-tree-based models needed to be refined to incorporate more 

knowledge of AOX substrates and nonsubstrates. Here, a substrate/nonsubstrate classification 

model was first constructed. The maximum, minimum and average values of local features of all 

potential SOMs within each molecule were calculated (described in Experimental Section). Then, 

all descriptors were used to construct the substrate/nonsubstrate classification model using training 

dataset of Cruciani et al.17 During the dataset training stage, for every hyperparameter 

combination, 5-folds cross-validation was performed and the F1-score was used as model 

performance evaluation metric. The final selected hyperparameters were: layer size: [400,200], 

learning rate: 0.001, batch size: 32, dropout rate: 0.3. Table 1 summarized the model performance 

of the deep neural network (DNN) classification model. For comparison, the methods recently 

proposed by Montefiori et al.18 were benchmarked here with the same test and external datasets. 

We may find that DNN model demonstrated more accurate prediction results on these tests.

Table 1. The performance of DNN substrate/nonsubstrate classification model.

Train Test External test
Performance 

Score DNN DNN
NMR 

Shielding*

ESP 

charge*

Chemcial 

Shift*
DNN

NMR 

Shielding

ESP 

charge

Chemcial 

Shift

SE 0.88 0.80 0.79 0.86 0.79 0.85 0.64 0.64 0.64

SP 0.95 1.00 0.38 0.56 0.38 0.94 0.58 0.58 0.63

Acc 0.92 0.93 0.57 0.70 0.57 0.90 0.60 0.60 0.63

F1 0.90 0.89 0.63 0.73 0.63 0.88 0.54 0.54 0.56

* Descriptors for predicting AOX-mediated SOM proposed by Montefiori et al.18

As stated, it was difficult for DTAOX model to predict the metabolic tendency accurately within 

similar analogues, and to recognize the nonsubstrate accurately. Thus, we analyzed the 

classification ability of DNN model toward a series of similar molecules in test dataset. As shown 
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in Figure 5, the MOL486, MOL487 and MOL488 were mistaken as substrates by DTAOX model, 

which were stable toward hAOX-mediated metabolism. In DTAOX model, the position 2 in purine 

ring within MOL486 and in imidazole ring within MOL487 and MOL488 were predicted to be 

metabolic sites. In contrast, the DNN substrate/nonsubstrate classification model could accurately 

recognize the metabolic susceptibility of these molecules. (For the molecules in Figure 2, the DNN 

substrate/nonsubstrate classification model also yielded sound prediction results, as shown in 

Figure S3 of SI.)

Figure 5. Examples of prediction ability of DNN substrate/nonsubstrate classification model on 

test datasets. The positive and negative sites predicted by DTAOX are colored in red and blue circles, 

respectively. Pred.: prediction results.

We also investigated the model performance on external dataset containing different molecules 

with diverse skeletons to evaluate the general applicability and robustness of this model. 

Furthermore, the DNN classification model was verified toward the external dataset in which the 

molecules were collected from different resources with multiple experimental conditions. As 

summarized in Table 1, the classification performance on external dataset was slightly poor than 

test dataset, with the exception of the higher SE score. These results on both test dataset and 

external dataset revealed the generalization ability of the DNN classification model.
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For several models introduced before, the focus was placed on determining which aromatic 

carbon could be metabolized by hAOX. In these studies, thermokinetic, electronic and steric 

hindrance effects were three main factors that were taken into consideration. The developed 

models yielded good prediction results toward molecules with similar scaffolds, but showed less 

generalization ability to molecules with different scaffolds.6, 14 One possible reason might be that 

the metabolism of different scaffolds was influenced by different factors, thus the consensus and 

limited descriptors were unable to differentiate the metabolic property of structurally diverse 

molecules. Here, both global and local descriptors were combined to construct the 

substrate/nonsubstrate classification model, which yielded much improved predictive ability to 

structurally diverse molecules. Based on this model, we next explored where the SOMs were 

located and then optimized our previously reported SOM prediction model DTAOX.

Optimization of SOMs Classification Model for Predicting SOMs toward hAOX

We have evaluated the DTAOX toward recently published data with known SOMs/nonSOMs 

information and the DTAOX showed insufficient generalization ability to these compounds (Table 

S1). After analyzing the predicted results of every branch of the decision tree, we observed that 

the ΔEinter could differentiate the true SOMs and false SOMs accurately, while the branch derived 

from the Steric was unsatisfactory. This result was also reflected by the statistical analysis 

described in previous section, where the ΔEinter was the most discriminating descriptor among all 

the local properties between SOMs and nonSOMs (Figure 4, Table S2), but Steric was less 

significant. Here, the decision tree based method was applied to optimize the previous DTAOX 

model (methods described in the Experimental Section). In decision tree models, a node’s impurity 

is a function that measures the homogeneity of classes in data samples reaching the node. The 

smaller the degree of impurity, the more skewed the class distribution. By minimizing the gini 
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impurity of every branch,28 we observed that combining the local exposed area of the reactive atom 

H adjacent to the reactive center C (H_EA) with Steric could significantly improve the 

performance derived from the middle range of ΔEinter. We therefore optimized the classification 

tree model, which will be referred to as DTNAOX hereafter (Figure 6A).

Figure 6. Decision tree model DTNAOX (A) for predicting hAOX-mediated SOMs, and its 

performance on (B) the test dataset and (C) the external dataset, compared with our previous 

DTAOX model6 and three descriptors proposed by Montefiori et al.18 

Taking H_EA into consideration, we noticed that the sensitivity score was improved 

significantly toward the test dataset (Figure 6B). For further validation, the DTNAOX was evaluated 

toward an external dataset extracted from several different literatures with diverse scaffolds and 

different experimental conditions. For this external dataset, the DTNAOX model demonstrated 

decent performance (Figure 6C), and significantly exceeded DTAOX, especially in terms of SE 
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score. Prediction results of the methods proposed by Montefiori et al.18 were also benchmarked 

here for reference.

As shown, the SE was improved significantly with the descriptor H_EA introduced. Though 

the significance of the properties of the aromatic C had been demonstrated before (Figure 4, Table 

S2), after further analysis of these descriptors, we found that the ΔEinter, H_EA and Steric yielded 

the best performance toward test dataset. First of all, the thermokinetic effect was of high 

importance for the metabolic reaction. According to the proposed reaction mechanism 

aforementioned, the H atom attached to the potential metabolic site C of the compound needed to 

be seized by MoCo, thus the exposed area of H also had a great influence on the occurrence of the 

reaction. Actually, the descriptor Steric describes the global steric hindrance, which indicated 

whether the MoCo could access to the reaction site, and the H_EA represents the local steric 

influence when two reactive atoms access to each other for bond breakage and formation. With 

reaction barrier, global and local hindrance effects considered, we might find that our optimized 

model have not only good generalization ability, but also good interpretation ability for the 

mechanism of AOX-medicated reaction.

Fusing Model for Prediction of hAOX Substrate and Site of Metabolism

In the actual drug-discovery-and-optimization program, the researchers concern whether the 

molecule is metabolized then recognition and optimization of the SOMs come next. Thus, the 

DNN substrate/nonsubstrate and DTNAOX classification model were combined here to predict 

whether the molecule was a hAOX substrate and the corresponding SOM or SOMs for practicable 

purpose. Overall, fusing model could efficiently and accurately identify the molecular liability 

toward hAOX-mediated biotransformation and predict the SOMs, providing more comprehensive 
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information of the hAOX-catalyzed metabolism. The proposed fusing model flowchart is shown 

in Figure 7.

Figure 7. The flowchart of fusing model. The datasets1 and datasets2 contain the data with 

substrate/nonsubstrate and SOMs/nonSOMs labels, respectively. The red and blue circles 

indicate the predicted metabolic and nonmetabolic sites, respectively. The arrows indicate the 

metabolic sites identified in human liver cytosols.

Screen AOX Substrates in Epigenetics-related Inhibitors Using Fusing Model

The compounds regulating epigenetic modification are currently in the early stage of clinical 

development. Most of their inhibitors are similar to kinase inhibitors that contain nitrogen-

containing aromatic heterocyclic fragments, which may be potential hAOX substrates. In order to 

further verify the practicability of our model, virtual screening of hAOX substrates was conducted 

for compounds related to epigenetic regulation that have not been reported on hAOX metabolism. 
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102 epigenetics-related inhibitors containing AOX-substrate-like motif were obtained from 

Selleck (https://www.selleck.cn/pharmacological_epigenetics.html). All potential AOX metabolic 

sites of these epigenetics-related inhibitors were labeled by matching predefined SMARTS rules, 

then the fusing model was used to predict whether the molecule was a hAOX substrate and the 

corresponding SOMs. To validate the in silico prediction results, 15 compounds were incubated 

with human liver cytosol separately, and ultraperformance liquid chromatography 

(UPLC)/quadrupole time-of-flight mass spectrometry (Q-TOF MS) was used to analyze the 

incubation mixtures to assess their potential to turnover by hAOX (the 15 compounds’ information 

is provided in SI, Table S6). A compound metabolized would display an additional peak in the 

total ion chromatogram upon mass spectrometric analysis of the incubation mixture, meaning there 

would be addition of an oxygen atom and occurrence of oxidative metabolism, if the molecular 

ion (MH+) corresponding to the peak of the metabolite was 16 daltons greater than the molecular 

ion of parent compound.  The relationship of the observed oxidative metabolite with the parent 

was confirmed from their respective mass spectral fragment ions. Furthermore, the contribution of 

hAOX to the oxidative metabolism of a given compound incubated with human liver cytosol was 

confirmed by chemical inhibition studies. The effects of various molybdenum hydroxylase 

inhibitors on the formation of oxidative metabolite were examined. The chemical inhibitors 

raloxifene and hydralazine were used to selectively inhibit cytosolic AOX, whereas allopurinol 

was used to selectively inhibit cytosolic xanthine oxidase (XO).29-31 If metabolism by hAOX was 

involved, a substantial decrease of the liquid chromatography−mass spectrometry (LC-MS) peak 

area would be observed for an oxidative metabolite after adding raloxifene or hydralazine to the 

incubation system. In this way, the different inhibitory potential of AOX and XO selective 
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inhibitors to the formation of the oxidative metabolite would suggest which enzyme was mainly 

responsible for the oxidation metabolism. 

Figure 8. Predicted hAOX-catalyzed SOMs for 15 epigenetics-related inhibitors using the fusing 

model. Red and blue circles indicate the metabolic and nonmetabolic sites, respectively, predicted 

by DTNAOX. The proposed metabolic region is marked using dotted box. Pred.: prediction results. 

Exp.: experimental results.
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On the basis of the fusing model, compounds S7276, S7577, S7832 and S2686 were predicted 

as substrates by DNN substrate/nonsubstrate classification model and the rest of 11 compounds 

were predicted as nonsubstrates for hAOX (Figure 8). Then, the corresponding SOMs of 4 

predicted substrates were predicted by using DTNAOX SOMs classification model highlighted in 

Figure 8 and the descriptor values are listed in Table S3. To validate our in vitro experimental 

method, known hAOX substrates SGX523 and JNJ-38877605 and Amodiaquine were evaluated 

with the abovementioned human liver cytosol assay.17, 32-33 All these positive controls displayed 

significant oxidative metabolite formation and high inhibition ratio of the selective AOX inhibitor, 

which verified the reliability of the assay (data and spectrum are provided in SI, Figure S4, S5 and 

Table S7). For the 15 epigenetics-related inhibitors, only compounds S7276, S7577, S7832, 

S7373, S1129 and S2686 had mono-oxidized metabolites detected by LC-MS (Ion extraction 

chromatographs of parent and their corresponding mono-oxidized metabolites are shown in Figure 

9). The metabolic region of these 6 compounds was identified based on the fragment ion 

information from Q-TOF MS and marked using dotted box (Figure 10). No further attempt was 

taken to confirm the oxidative metabolites structures. Then, to identify the molybdenum 

hydroxylase (AOX or XO) mainly contributed to the oxidation metabolism of these 6 compounds, 

chemical inhibitors were added to the incubation system. AOX selective inhibitors, raloxifene and 

hydralazine inhibited over 93.9% of the oxidation metabolite formation of these compounds, while 

XO selective inhibitor allopurinol exhibited limited inhibition (less than 12.0%) toward them (data 

for inhibition study is listed in Table 2 and the LC-MS peak area data is provided in SI, Table S8 

and S9). In summary, these data demonstrated that AOX not XO was the enzyme responsible for 

the formation of the oxidative metabolite. And accordingly, S7276, S7577, S7832, S7373, S1129 

and S2686 were confirmed to be hAOX substrates.
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The molecules experimented included miscellaneous scaffolds like quinoline-, isoquinoline-, 

quinazoline-, quinoxaline- and pyridine-substituted azaheterocycle ring compounds as well as 

bicyclic skeletons. Unlike the molecules experimented by Lepri et al., electron-donating group 

(EDG) and electron-withdrawing group (EWG) appeared more than once for most types of 

aforementioned scaffolds within our experimented molecules. The fusing model yielded an overall 

accuracy of 0.87, with SE 0.67 and SP 1.0. For the substrates predicted by DNN classification 

model, the predicted SOMs were in accordance with the proposed metabolic region (Figure 8 and 

Figure 10). Despite two wrong predictions for substrates, the fusing model showed satisfactory 

performance on the experimental validation.
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Figure 9. Ion extraction chromatographs of the parent compounds (left) and their corresponding 

mono-oxidized metabolites (right) formed in human liver cytosol.

For compounds containing quinoline- or isoquinoline- fragments such as S7276, S7577, S7832 

and S1007, the model gave sound prediction results and the corresponding SOMs of substrates 

were in accordance with the proposed metabolic region. As we have discussed, for quinoline-

containing substrates, the ΔEinter alone could not determine the susceptibility of potential SOMs 
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toward oxidation and the Steric always gave higher false positive rate. Like S7276, the same 

instances were also discovered in our experimented molecules that ΔEinter alone was not decisive. 

Like site1 in S7276, after combing H_EA with Steric, the DTNAOX model could predict the true 

SOM accurately while Steric alone gave wrong prediction. Lepri et al. have concluded that the 

EDG at position 4, 6 and 7 of quinolines or isoquinolines might be substrate, and the EWG vice 

versa.16 The same instance was also discovered in our experimental molecules S7276 and S7832 

with EDG substituents, which were all susceptible to hAOX. Besides, regarding to the metabolism 

of S7577, the EDG at position 8 also increased the susceptibility toward hAOX, which was not 

discovered in existing studies.
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Figure 10. Positive product ion spectra of the parent compounds (left) and their corresponding 

mono-oxidized metabolites (right) formed in human liver cytosol. The m/z of parent ion was 
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colored in purple, and the m/z of relevant product ions which were applied to identify the 

oxidized regions was colored in blue.

Regarding compounds containing quinazoline-, quinoxaline- and bicyclic-skeletons substituted, 

the metabolism was more complicated. For quinazoline-substituted molecules like S2867 and 

S5904, there were EDG groups at position 4 and two EWG groups at position 6 and 7, and this 

kind of substitution was beyond the SMR scope summarized by Lepri et al.16 The same situation 

was discovered in quinoxaline- and bicyclic-skeletons substituted compounds that were not mono-

substituted, namely with only one EDG- or EWG- substituted. Except for S1129, the fusing model 

still gave concerted predictive results for these heterogeneously substituted scaffolds. Lepri et al. 

proposed that pyridine-containing compounds are always stable to hAOX-mediated 

biotransformation.16 While the in vitro experimental results demonstrated that some pyridine 

substituted molecules are also susceptable toward hAOX. For example, S7373 with pyridine 

skeleton was metabolited by hAOX while the S8776 was stable, and both molecules have EWG 

substituted. For the last two kinds of skeletons, molecules were all correctly predicted except 

S7373. 

Table 2. Inhibition study of AOX/XO selective inhibitor on the formation of oxidative 

metabolite in human liver cytosol.a

Raloxifene

(AOX inhibitor)

Hydralazine

(AOX inhibitor)

Allopurinol

(XO inhibitor)Compound Name

Inhibition Ratio (%) Inhibition Ratio (%) Inhibition Ratio (%)
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S7276 98.3 99.7 7.33

S7577 93.9 97.3 4.97

S7832 100 100 2.45

S7373 100 100 7.50

S1129 99.7 99.7 9.25

S2686 99.6 99.4 12.0

a Inhibition Ratio = 1 ―
peak area of oxidative metabolite in human liver cytosol with inhibitor

peak area of oxidative metabolite in human liver cytosol without inhibitor

Overall, these results highlighted the practicality of our model in recognizing the regioselectivity 

of molecules and metabolic SOM toward hAOX. With a clear SMARTS-pattern definition of the 

potential SOM, the fusing model can be used to prioritize compounds on the basis of their 

susceptibility toward hAOX.

CONCLUSION

As issues caused by hAOX-catalyzed metabolism of new drug molecules continue to emerge, it 

is critical that medicinal scientists have reliable and efficient methodologies to identify whether a 

molecule is a hAOX substrate, and where its metabolic site is. Unfortunately, the hAOX has quite 

wide substrate selectivity and diversity, which poses challenges for the predictive models. In this 

study, a combined model was developed based on structurally diverse molecules with 

homogenously experimental data, and it yielded improved performance on predicting the 

metabolic propensity and explaining the metabolic regioselectivity of hAOX mediated reaction. 

Moreover, the improved computational model was used for screening structurally diverse drug 
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candidates containing potential hAOX metabolic sites, the results were then experimentally 

validated with in vitro assays. Overall, this study provides practical scheme to optimize hAOX 

metabolic profile of chemicals, which is of the essence for the hit-to-lead optimization in drug 

development.

EXPERIMENTAL SECTION

Potential SOMs and Tetrahedral Intermediate Defining

According to the catalytic mechanism and previously reported hAOX metabolites, we optimized 

the SMiles ARbitrary Target Specification (SMARTS) strings of the two types of potential SOMs 

(Table 3).6 The code for extracting potential SOM defined by SMARTS was implemented using 

Python 3.6 with RDKit 2018.09.1 version.

Table 3 Two types of potential sites of metabolism by hAOX.

Typ

e
Descriptions SMARTS

Representative 

substrates/sites

Representative 

intermediates

A
The carbon in the aromatic 

ring adjacent to the aromatic 
nitrogen with exactly one 

hydrogen

[$([cR;H]:[nX2R])]
N

S
N

N
N

N

N
N

SGX-523

HN

S
N

N
N

N

N
N

OH

B
The carbon in the aromatic 
ring conjugated addition 
with γ-position nitrogen 

with exactly one hydrogen

[$([#6D2R;H][*][*][

#7X2R])]

N
H
N

O N
DACA

N
H
N

O HN

OH

Dataset Preparation and Construction
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Existing metabolic datasets may show variance, in the quality of chemical/biological samples, 

measurement methods, experimental conditions, etc. To address this problem: (1) We only used 

experimentally determined metabolism data, and in silico data were not considered; (2) We have 

carefully chosen the data validated in human liver cytosol as our main dataset to reduce the 

inconsistency of experimental conditions; (3) We further excluded the data of the same molecule 

collected from different sources but with inconsistent metabolic profiles. These procedures help 

us increase the reliability of dataset on merging data from different sources. The hAOX-oxidated 

experimental data from the work published by Lepri et al. and Cruciani et al. were collected.16-17 

The homogenous data was used for model construction and the number of molecules used to 

construct model are listed in Table 4. For substrate/nonsubstrate classification model, the training 

dataset was extracted from Cruciani et al.’s work and the test dataset was from Lepri et al.’s work, 

and the inconsistent data and molecule failed for descriptor calculation were excluded (For detailed 

molecules that were excluded were listed in SI). For SOM model, our previous training dataset 

was enriched with recently published data.7, 19 The same test dataset in ref 6 was used here for 

model comparison.

Furthermore, we assessed the predictive ability of the classification model against an external 

datasets collected from the literatures published recently.7, 19, 34-35 Noting that there were no 

overlapping molecules among the training dataset, test dataset and external dataset for 

substrate/nonsubstrate classification model construction, which was the same as the construction 

of SOMs/nonSOMs classification model. The detailed description of the dataset used for 

substrate/nonsubstrate model construction is provided in SI. And the structures with SOM 

information collected from newly published work is provided in Table S4. The structures of 

nonsubstrates collected from newly published work is provided in Table S5.
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Table 4. Datasets used in the model construction and validation.

Dataset distribution

Substrate/Nonsubstrate 

classification model

(molecules per dataset)

SOMs

classification model

(sites per dataset)

Positive 202 45
Train dataset

Negative 299 128

Positive 10 14
Test dataset

Negative 20 12

Positive 13 14
External dataset

Negative 17 70

Descriptors Calculation

A total of 48 descriptors were calculated here. The energy changes between hAOX substrate 

and the tetrahedral intermediate (ΔEinter) and steric hindrance (Steric) were calculated based on 

the methods described by Xu et al.6 The other descriptors were computed using Spartan’18 v. 

1.2.0, which could be categorized as topological, physicochemical and electronic features. Table 

5 provides a brief description of these descriptors.

Table 5. Condensed list of descriptors
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Atom-level descriptors

ExposedArea the ExposedArea of the reaction related atoms, describing the steric 

exposure of the reaction related atom

Bond order The bond order of the C-H and C-N

Atom charge The Electrostatic potential charge of the reaction related atoms

Chemical shift The chemical shift of the reaction related atoms

Isotropic The average three diagonal elements of the magnetic shielding tensor

Molecule-level descriptors

electronegativity The electronegativity of the molecule, defined as 

―(𝐻𝑂𝑀𝑂 + 𝐿𝑈𝑀𝑂) 2

hardness The hardness of the molecule, defined as ―(𝐻𝑂𝑀𝑂 ― 𝐿𝑈𝑀𝑂) 2

QSAR_ACC.Area The accessible area of the molecular surface

QSAR_MIN_Elpot The min local values of the electrostatic potential

Dipole The dipole moment of the molecule

Solvation The solvated energies of the molecule

Model Construction and Hyperparameter Optimization
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Deep neural networks (DNN) have been successfully applied in addressing drug metabolism 

related prediction tasks,21, 36 in which the algorithm can be considered as a function that maps the 

input vector, which is the representation of a compound by its predefined features, to an output 

vector that represents the prediction task. For substrate/nonsubstrate classification, the deep neural 

network algorithm was used to predict whether the molecule was a hAOX substrate. The 

maximum, minimum and average value of descriptors of all potential SOMs within each molecule 

were calculated, which were fed into the model as molecular level descriptors. The descriptor 

mapping and model construction procedures are illustrated in Figure 11. 

Figure 11. The descriptor mapping and model construction flowchart. The quinoline and DNN 

model structure were used to elucidate the flow chart.
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To optimize the performance of DNN model, the hyperparameter optimization was carried out 

via  a grid search algorithm.37 The searched hyperparameter included network architecture (layer 

size), learning rate, batch size and dropout rate. The detailed hyperparameter setting is listed in 

Table 6.

Table 6. The hyperparameter setting

Hyperparameters Setting

Layer size

([100,200,300,400,500,600,700,800,900,1000])

([100,50], [200,100], [300,150], [400,200], [500,250], [600,300], 

[700,350], [800,400], [900,450], [1000,500])

([400,200,100],[600,300,150],[800,400,200])

Learning rate (0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01)

Batch size (8, 16, 32, 64)

Dropout rate (0.1, 0.2, 0.3, 0.4, 0.5)

For SOMs classification model, the decision-tree-based classification model was constructed 

with the Scikit-learn v0.21.3 using the Classification and Regression Trees (CART) algorithm.38 

CART is a nonparametric approach that can deal with both categorical and numeric dependent 

variables, and it constructs binary trees using the feature and threshold that yield the largest 

information gain at each node.39 During the model training phase, 5-folds cross validation was 

implemented on the training dataset with F1-score as validation criterion, and the obtained models 

were evaluated by the following metrics:

Sensitivity(SE) =  𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)  

Specificity(SP) =  𝑇𝑁
(𝑇𝑁 + 𝐹𝑃) 
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Accuracy(Acc) =  (𝑇𝑃 + 𝑇𝑁)
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

F1 =  2 ∗ 𝑇𝑃
(2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)

TP: the number of true positive predicted by the model. TN: the number of true negative 

predicted by the model. FP: the number of false positive predicted by the model. FN: the number 

of false negative predicted by the model.

Human Liver Cytosol Incubations of Epigenetics related Inhibitors

Human liver cytosol for assays (mixed sex; pool of 50 donors; catalog no. H0610.C, lot no. 

1610027; 30 males and 20 females) was purchased from Sekisui XenoTech. The incubations were 

carried out in 1.5 mL micro-centrifuge tubes. Briefly, the incubation mixture was composed of 

human liver cytosol (2 mg/mL final protein concentration), 2 mM MgCl2, 10 µM test compound 

and 100 mM potassium phosphate buffer, pH 7.4. The total volume of each incubation was 200 

µL and the final concentration of dimethyl sulfoxide (DMSO) used in the assay was 0.1% (v/v). 

Reactions were commenced with the addition of test compound after pre-warming at 37°C for 3 

min in a low-speed shaking thermomixer and terminated by adding an equal volume of ice-cold 

acetonitrile after 3 h of incubation. Each sample was immediately mixed, and subsequently 

centrifuged at 12000 rpm for 10 min at room temperature. The supernatant was transferred into a 

96-well plate for analysis by UPLC/Q-TOF MS. The control samples were prepared with no test 

compound or with inactivated enzymes. All samples for the experiment were performed in 

triplicate.

UPLC/Q-TOF MS Analysis
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The UPLC/Q-TOF MS system consisted of a Waters Acquity UPLC system coupled to a Waters 

Synapt G2 Q-TOF MS. Chromatography was performed on a Waters Acquity UPLC HSS T3 

column (2.1*100 mm, 1.8 µm; maintained at 45°C) using a mobile phase that consisted of solvent 

A (2.5 mM aqueous ammonium acetate containing 0.1% formic acid) and solvent B (methanol or 

acetonitrile/methanol, 9:1, v/v). The mobile phase was delivered at 0.4 mL/min in a gradient 

manner, e.g., 0–1 min, at 10% solvent B; 1–6.5 min, from 10% to 55% solvent B; 6.5–7.5 min, 

from 55% to 95% solvent B; 7.5–9.0 min, at 95% solvent B; and 9.0–10.0 min, at 10% solvent B. 

A 7 µL aliquot of the sample in the 96-well plate was injected into the system. The Synapt G2 Q-

TOF MS was operated in resolution mode with electrospray ionization. The capillary and cone 

voltages were set at 3 kV and 30 V. The source and desolvation temperatures were set at 120 and 

400 °C, respectively. Nitrogen was applied as the cone gas (50 L/h) and desolvation gas (800 L/h). 

All data were acquired in positive ionization mode. Mass was externally calibrated with a 0.5 mM 

sodium formate solution at 25 μL/min over a range of m/z 50-1000 and corrected during 

acquisition using an external reference (LockSpray™) consisting of a 40 ng/mL solution of leucine 

enkephalin infused at a flow rate of 10 μL/min via a LockSpray interface, generating a reference 

ion for positive ion mode (m/z = 556.2771) to ensure accuracy during the analysis. Metabolites 

were characterized by MS full scan and product ion scan that both ranged from m/z 50 to 1000. 

Product ion scan was obtained either from the MSE approach or the dedicated MS/MS experiment. 

For MSE approach, accurate mass data were acquired by two separate scan functions programmed 

with independent collision energies (e.g., trap collision energy in function 1 was 2 V and an energy 

ramp of 15-25 V was used in function 2). With MS/MS experiment, for example, the trap collision 

energy was ramped from 10 to 16 V, whereas the transfer collision energy was ramped from 14 to 
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22 V. All the instrument control and data acquisition were achieved using Waters MassLynx 

software (version 4.1).

Molybdenum Hydroxylase Inhibition Study

Aldehyde oxidase selective inhibitors raloxifene, hydralazine and xanthine oxidase selective 

inhibitor allopurinol were used in the study to further investigate the involvement of human 

aldehyde oxidase in the oxidative metabolism of the test compounds. The incubation sample 

contained human liver cytosol (2 mg/mL final protein concentration), 2 mM MgCl2, 10 µM test 

compound, 100 µM inhibitor and 100 mM potassium phosphate buffer, pH 7.4. The test 

compounds and inhibitors were dissolved in DMSO respectively and the final concentration of 

DMSO in each incubation (200 µL total volume) was 1.1% (v/v). The mixtures were pre-incubated 

for 3 min at 37°C, and each reaction was initiated by adding test compound. After incubation at 

37°C for 3 h, reactions were terminated by adding 200 µL ice-clod acetonitrile. The mixtures were 

centrifuged and 7 µL of the supernatant was injected into the UPLC/Q-TOF MS. Controls without 

inhibitors were also prepared. Experiments were performed in triplicate.

ASSOCIATED CONTENT
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prediction results of molecules in Figure 2 by DNN substrate/nonsubstrate classification 

model (Figure S3); Ion extraction chromatographs of the positive control (Figure S4); 

Positive product ion spectra of the positive control (Figure S5); The predictive 

performance of DTAOX on newly published data  (Table S1); Distributions of descriptors 

between SOMs and nonSOMs (Table S2); Descriptor values of 4 substrates predicted by 

fusing model (Table S3); The substrates with SOM information collected from newly 

published work (Table S4); The  nonsubstrates’ structure collected from newly published 

work (Table S5); The structures used for experimental validation (Table S6); Inhibition 

study of oxidative metabolites for positive control incubated in human liver cytosol with or 

without human AOX chemical inhibitors (Table S7); LC-MS peak areas of oxidative 

metabolites for compounds incubated in human liver cytosol with or without human AOX 

chemical inhibitors (Table S8); LC-MS peak areas of oxidative metabolites for compounds 

incubated in human liver cytosol with or without human XO chemical inhibitor (Table S9) 

(PDF) with Molecular formula strings (csv) used in model construction.
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AOX, Aldehyde oxidase; hAOX, human AOX; SOM, site of metabolism; FAD, flavin 

adenine dinucleotide; MoCo, molybdenum cofactor; SMR, structure-metabolism 

relationship; ESP, electrostatic potential; LUMO, lowest unoccupied molecular orbital. 

ELUMO, energy of LUMO; AD, applicability domain; SE, sensitivity score; SP, specificity 

score; Acc, accuracy; HOMO, highest occupied molecular orbital; DNN, deep neural network; 

DT, decision tree; UPLC, ultraperformance liquid chromatography; Q-TOF MS, quadrupole time-

of-flight mass spectrometry; LC-MS, liquid chromatography−mass spectrometry; XO, xanthine 

oxidase; EDG, electron-donating group; EWG, electron-withdrawing group; SMARTS, SMiles 

ARbitrary Target Specification; DMSO, dimethyl sulfoxide.
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ΔEinter =  11.1669

Steric = 7.6691

ΔEinter =  12.1557

Steric = 7.6977
ΔEinter =  11.0852

Steric = 7.6715

ΔEinter =  6.9659

Steric = 7.6911

MOL038: substrate

DTAOX _Pred.: substrate

MOL044: nonsubstrate

DTAOX _Pred.: substrate
MOL116: nonsubstrate

DTAOX _Pred.: substrate

MOL076: nonsubstrate

DTAOX _Pred.: substrate

* * * *
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ΔEinter =  8.5585

Steric = 11.2067

ΔEinter =  16.4708

Steric = 22.6019
ΔEinter =  12.0118

Steric = 13.4549 ΔEinter =  11.3887

Steric = 8.0280
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