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SUMMARY

Metastatic prostate cancer is characterized by recurrent genomic copy number alterations that are pre-
sumed to contribute to resistance to hormone therapy. We identified CHD1 loss as a cause of antiandrogen
resistance in an in vivo small hairpin RNA (shRNA) screen of 730 genes deleted in prostate cancer. ATAC-seq
and RNA-seq analyses showed thatCHD1 loss resulted in global changes in open and closed chromatin with
associated transcriptomic changes. Integrative analysis of this data, together with CRISPR-based functional
screening, identified four transcription factors (NR3C1, POU3F2, NR2F1, and TBX2) that contribute to antian-
drogen resistance, with associated activation of non-luminal lineage programs. Thus, CHD1 loss results in
chromatin dysregulation, thereby establishing a state of transcriptional plasticity that enables the emergence
of antiandrogen resistance through heterogeneous mechanisms.

Significance

We describe a strategy to comprehensively identify genomic loss-of-function alterations in metastatic prostate cancer
through an in vivo shRNA library screening approach. We find that loss of CHD1, a commonly deleted prostate cancer
gene, confers resistance to the next-generation antiandrogen enzalutamide by establishing a state of chromatin dysregu-
lation. This altered chromatin landscape facilitates the emergence of lineage plasticity by upregulation of transcription fac-
tors that promote differentiation away from the luminal lineage. Furthermore, we find that clinical response to enzalutamide
is shorter in patients whose tumors have reduced CHD1 levels.
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INTRODUCTION

Targeted therapies for driver oncogenes have transformed the

clinical management of many cancers but the magnitude and

duration of response remains variable, even among patients

with the same driver mutation and tumor histology. One potential

explanation for this heterogeneity is the presence of additional

genomic alterations that modify the degree of dependence on

the targeted driver mutation. Metastatic prostate cancer serves

as a relevant example, where the molecular target is the

androgen receptor (AR) which functions as a lineage survival fac-

tor of luminal prostate epithelial cells. Next-generation AR thera-

pies, such as abiraterone, enzalutamide, and apalutamide have

significantly improved survival of men with castration-resistant

prostate cancer, but resistance remains an issue (Beer et al.,

2014; Ryan et al., 2013; Smith et al., 2018). Some patients fail

to respond despite robust AR expression, whereas others

relapse quickly.

Mechanisms of resistance to AR therapy fall into three general

categories: (1) restoration of AR signaling; (2) bypass of AR

signaling via other transcription factors (TFs), e.g., glucocorticoid

receptor (Arora et al., 2013; Isikbay et al., 2014); and (3) AR-inde-

pendent signaling (reviewed inWatson et al., 2015). One example

of the latter category is combined loss of function of the TP53 and

RB1 tumor suppressors, which confers resistance by promoting

lineage transition to a state that is no longer dependent on AR

and its downstream signaling pathway (Ku et al., 2017; Mu et al.,

2017). Similar cases of lineage plasticity in the context of drug

resistance have been documented in epidermal growth factor re-

ceptor-mutant lung adenocarcinoma and in BRAF-mutant mela-

noma, including transition to neuroendocrine or mesenchymal

phenotypes (Garraway et al., 2005; Park et al., 2018; Sequist

et al., 2011). These examples provide clear precedent for how

co-occurring genomic alterations can affect response to targeted

therapies.Due to theheterogeneousnumberofcopynumberalter-

ations (Abida et al., 2017; Barbieri et al., 2012; Beltran et al., 2011,

2016; Grasso et al., 2012; Holcomb et al., 2009; Kim et al., 2007;

Robinson et al., 2015; Taylor et al., 2010), we surveyed the

genomic landscape of metastatic castration-resistant prostate

cancer (mCRPC) for modifiers of sensitivity to AR therapy.

RESULTS

Enrichment of shRNAs Targeting CHD1 in an In Vivo

Enzalutamide Resistance Screen
To identify genomic modifiers of sensitivity to AR therapy, we

constructed a pooled small hairpin RNA (shRNA) library targeting

genes most frequently deleted in primary or metastatic prostate

cancer, then screened for resistance to enzalutamide in a well-

credentialed enzalutamide-sensitive xenograft model (Arora

et al., 2013; Tran et al., 2009). The decision to conduct the screen

in vivo was based on the fact that in vivomodels provide a more

physiologic context for studying castration-resistant growth than

in vitromodels, which rely on the use of charcoal-stripped serum

to emulate castrate level of androgens. Indeed, in our hands find-

ings from in vivo screens have often been confirmed in clinical

datasets (Arora et al., 2013; Balbas et al., 2013).

We generated a list of 730 genes deleted in human prostate

cancer (Table S1) through bioinformatic mining of 6 independent

genomic datasets as described in the STAR Methods (Barbieri

et al., 2012; Grasso et al., 2012; Holcomb et al., 2009; Kim

et al., 2007; Network, 2015; Taylor et al., 2010). We then con-

structed an shRNA library targeting these genes (5–6 hairpins

per gene 3 730 genes = 4,234 hairpins total) using the miR-E-

derived system, which has significantly improved knockdown ef-

ficiency and target specificity compared with traditional shRNA

approaches (Fellmann et al., 2013) (Figure 1A; Table S2). We

conducted our screen in vivo, using the enzalutamide-sensitive

LNCaP/AR xenograft model, with the goal of identifying shRNAs

enriched during enzalutamide therapy (Figure 1B). One chal-

lenge of in vivo screens is assurance of adequate library repre-

sentation, since not all cells injected in vivo will contribute to

the established tumors. This can be managed by limiting the

number of shRNAs per injection and by dividing the library into

distinct pools (Zuber et al., 2010, 2011). In a pilot experiment us-

ing the enzalutamide-resistant AR mutant (F877L) as a positive

control (Balbas et al., 2013), we found that dilution of one

F877L-positive cell in 100 parental LNCaP/AR cells consistently

gave rise to tumors in enzalutamide-treated mice after

�6 weeks, compared with �19 weeks for cells infected with

the non-targeting control vector (shNT) (Figure S1A). Based on

this result, we concluded that a pool size of 100 shRNAs should

give adequate representation and therefore subdivided the li-

brary into 43 pools with �100 shRNAs per pool. Enzalutamide

functions as an agonist on the F877L mutant and may be more

potent in this assay than the shRNAs to be screened; therefore,

we selected 16 weeks as an optimal time to harvest tumors,

before the appearance of background tumors. Each pool was

screened using 10 independent injections to ensure that we

could identify those shRNAs that were reproducibly enriched

and eliminate those that were enriched due to stochastic clonal

expansion (bystander shRNAs).

Multiple tumors emerged by 16 weeks from 40 of 43 pools

screened (Figure S1B). Genomic DNA was extracted from these

tumors and analyzed by next-generation sequencing to deter-

mine the enrichment of specific shRNAs compared with the

starting material (Figure 1B). As expected, the abundance of

most hairpins was reduced due to dilution by more rapidly ex-

panding clones. This is apparent from comparing the normalized

read counts of the starting plasmid library and pregraft popula-

tions (tightly distributed) to the tumors (broad distribution) (Fig-

ures 1C and 1D). Then we utilized a classic algorithm RIGER-E

(RNAi Gene Enrichment Ranking) to rank the 730 genes based

on the normalized read counts of all hairpins in both starting

plasmid library/pregraft and resistant tumor populations, as

described in the STARMethods section. A p value of <0.0001 re-

sulted in 172 genes as potential candidates (Figure 2A; Table

S3). TBC1D4 serves as a useful negative control because this

gene is already deleted in an LNCaP/AR model and is ranked

near the bottom, as expected (Taylor et al., 2010). Considering

the potential for stochastic enrichment of biologically inert hair-

pins in vivo, we applied 2 additional filters to this list of 172 genes

to enhance the probability of selecting true positives (1) enrich-

ment in >8% of total tumors xenografted (cutoff selected based

on stochastic enrichment rate of 8% for the negative control

gene TBC1D4) (Figure 2B) and (2) enrichment of >4 independent

hairpins targeting a specific gene (to avoid off-target effects)

(Figure 2C). Application of these filters yielded eight candidate
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genes (Figure 2A; Table S3). Chromodomain helicase DNA-bind-

ing protein 1 (CHD1) was selected for further analysis based

on its high frequency of deletion in prostate cancer (Augello

et al., 2019; Grasso et al., 2012; Ren et al., 2018; Robinson

et al., 2015; Rodrigues et al., 2015; Shenoy et al., 2017;

Zhao et al., 2017). A representative example of CHD1 shRNA

enrichment from one of the pools is shown in Figure 2D.

CHD1 Loss Confers Enzalutamide Resistance In Vitro

and In Vivo

In normal tissues, CHD1 functions as a chromatin remodeler

and is required to maintain the open chromatin state of plurip-

otent embryonic stem cells and for somatic cell reprogramming

(Gaspar-Maia et al., 2009). Numerous lines of evidence from

cell lines and genetically engineered mice implicate CHD1 as

a tumor suppressor, including in primary prostate cancer (Au-

gello et al., 2019; Huang et al., 2011; Liu et al., 2012; Rodrigues

et al., 2015; Shenoy et al., 2017; Zhao et al., 2017). To deter-

mine the link between CHD1 loss and enzalutamide resistance,

we performed validation experiments using five different stable

shRNAs and two different CRISPR guides. CHD1-depleted

cells consistently grew faster in enzalutamide-containing me-

dium than CHD1 wild-type cells, as measured in proliferation

assays, dose-response assays and a fluorescence-activated

cell sorting-based competition assay (Figures 3A–3D and

S2A–S2D). Similar results were observed with two other next-
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Figure 1. An In Vivo shRNA Library Screen of the Human Prostate Cancer Deletome

(A) Schematic representation of a miR-E shRNA library targeting the human prostate cancer deletome.

(B) Schematic representation of enzalutamide resistance screen using the miR-E shRNA library.

(C) Violin plot of the shRNA normalized read counts in the combined plasmid pools (n = 43), pregrafts (n = 21), and enzalutamide-resistant tumors (n = 344).

(D) Cumulative distribution of library shRNAs in the combined plasmid pools (n = 43), pregrafts (n = 21), and enzalutamide-resistant tumors (n = 344).

See also Figure S1 and Tables S1 and S2.
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generation AR inhibitors, apalutamide and darolutamide

(Figure S2D). These findings were confirmed in vivo in castrated

mice treated with enzalutamide (Figures 3E and S2E). In

addition to CHD1, we confirmed that knockdown of two other

candidate genes (RUBCNL and RBL2) also confers enzaluta-

mide resistance in LNCaP/AR cells cultured in vitro (Figure S2F).

Analysis of the other five candidates will be reported

separately.

Importantly, enzalutamide resistance conferred by CHD1

knockdown was fully rescued by introducing the full-length

CHD1 cDNA (Figure S2C). Using a doxycycline-inducible

shRNA knockdown model, we also confirmed that enzaluta-

mide resistance conferred by CHD1 knockdown is rapid and

reversible (Figures S2G–S2I). CHD1 knockdown also

conferred in vitro resistance to enzalutamide in the human

prostate cancer cell lines CWR22Pc, LAPC4, and E006AA

(but only in the context of PTEN loss) and in a genetically

defined mouse organoid model (Pten�/–) cultured in 3D, as

well as in vivo resistance in the CWR22Pc xenograft model

(Figures S3A–S3G).
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Figure 2. In Vivo Screen Identifies CHD1 as

Top Candidate Responsible for Resistance

to Antiandrogen

(A) Graphical representation of analyzed results of

the library screen, using RIGER-E method. –Log10

of p value is presented and the area of p < 0.0001 is

highlighted. The top eight candidate genes are

presented as large red dots with gene symbol.

Negative control gene TBC1D4 is presented as a

large green dot.

(B) Graphical representation of the percentage of

tumors which have shRNAs targeting a specific

gene and are enriched in resistant tumors.

(C) Graphical representation of the number of

genes which have multiple independent shRNAs

enriched in resistant tumors.

(D) Bee swarm plot of the normalized shRNA read

counts of a representative pool in the plasmid,

pregraft, and resistant tumors, median is pre-

sented as a red line (medians below 1 are not

presented on log2 scale). shCHD1s are presented

as large red dots.

See also Table S3.

Low CHD1 mRNA Level Is
Associated with Shorter Treatment
Response in CRPC Patients
A recent mCRPC genomic landscape

study with linked longitudinal clinical

outcome data provided an opportunity

to address whether CHD1 loss in patients

is associated with poor clinical response

to next-generation antiandrogen therapy

(Abida et al., 2019). Within this landscape

study we identified 56 CRPC patients

treated with either abiraterone or enzalu-

tamide on whom tumor whole-exome

and RNA sequencing (RNA-seq) data

were available within 30 days before treat-

ment. We initially asked if genomic CHD1

loss was associated with treatment response but there were too

few cases to run the analysis (only two with homozygous CHD1

deletion). We therefore asked if CHD1 mRNA expression is

correlated with outcome. A Cox proportional hazards regression

model was fitted on log2 (CHD1 mRNA level) as a continuous

predictor, which showed a regression coefficient of �0.39 and

p value of 0.11. Although this analysis did not meet the threshold

for statistical significance, it raised the possibility that lower

CHD1mRNA levels may have higher relative hazards or, in other

words, confer a higher risk to the patients. Indeed, a Pearson

correlation analysis showed that CHD1 mRNA level is signifi-

cantly correlated with progression-free survival time (p = 0.021)

(Figure 4A). To further dissect this correlation, we divided the

cohort into quartiles based on the CHD1mRNA levels, which re-

vealed a Gaussian-like distribution (Figure 4B). We excluded 4 of

the 56 patients who had SPOP mutations (who were distributed

evenly across the quartiles) because these patients have

increased sensitivity to abiraterone (Boysen et al., 2018). Pa-

tients in the lowest quartile of tumor CHD1 expression had a

significantly shorter time to progression on either enzalutamide
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Figure 3. CHD1 Loss Confers Significant Resistance to

Antiandrogen In Vitro and In Vivo

(A) Western blot of CHD1 in LNCaP/AR cells transduced with

annotated guide RNAs.

(B) Relative cell number of LNCaP/AR cells transduced with

annotated guide RNAs, normalized to sgNT + Veh group. Cells

were treated with 10 mM enzalutamide (Enz) or DMSO (Veh) for

7 days and cell numbers were counted. p values were calcu-

lated using multiple t tests, three biological replicates in each

group.

(C) Histograms of representative fluorescence-activated cell

sorting-based competition assay showing the distribution of

shNT LNCaP/AR cells (GFP-negative) compared with cells

transduced with cis-linked shCHD1-GFP or shNT-GFP shRNAs

(GFP positive). The distribution on day 0 is shown in red and day

7 is shown in blue.

(D) Relative cell number fold change compared with shNT

group, based on the results of (C). Enz denotes enzalutamide of

10 mM and Veh denotes DMSO. p values were calculated using

two-way ANOVA, three biological replicates in each group.

(E) Tumor growth curve of xenografted LNCaP/AR cells trans-

duced with annotated guide RNAs. Enz denotes enzalutamide

treatment at 10mg/kg from day 1 of grafting. Veh denotes 0.5%

CMC + 0.1% Tween 80.

p values were calculated using two-way ANOVA. For all panels,

mean ± SEM is presented. ****p < 0.0001, ***p < 0.001, **p <

0.01, *p < 0.05. See also Figures S2 and S3.
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or abiraterone compared with the patients in the highest quartile

(p = 0.0261) (Figure 4C), supporting the predictions from the pre-

clinical findings. This finding is further supported by Cox hazards

ratio analysis showing significant increased hazards related to

low CHD1 mRNA levels (Figure 4D). Interestingly, we find that

the poor clinical outcome seen in patients with low CHD1

expression is primarily seen in those treated with enzaluta-

mide/apalutamide (Figure 4E) but not abiraterone (Figure 4F),

which is confirmed by Pearson correlation analysis (Figures 4G

and 4H). This distinction is consistent with our experimental

data showing thatCHD1 deletion confers resistance to enzaluta-

mide but not to androgen withdrawal in the LNCaP/ARmodel (as

seen in charcoal-stripped serum treated with vehicle; Figures

3B, 3E, S2C, and S2D), raising the intriguing possibility of mech-

anistic differences in resistance to AR antagonists versus

androgen-lowering agents.

Integrated Analysis of RNA-Seq and ATAC-Seq Reveals
Candidate TF Drivers of Enzalutamide Resistance
To investigate the mechanism by which CHD1 loss promotes

antiandrogen resistance, we first asked if AR signaling activity

was restored in these enzalutamide-resistant tumors. To our sur-

prise, we observed sustained inhibition of the AR target genes

KLK3, NKX3-1, TMPRSS2, NDRG1, PMEPA1, and STEAP1,

indicating that canonical AR signaling is not restored (Figures

5A and 5B). This suggested that CHD1 loss might activate tran-

scriptional programs that relieve prostate tumor cells from their

dependence on AR by reprogramming away from their luminal

lineage, as we have reported previously in the setting of com-

bined loss of RB1 and TP53 (Ku et al., 2017; Mu et al., 2017).

Because CHD1 plays a role in chromatin remodeling, we

postulated that such lineage transitions (and their underlying

transcriptional programs) could be identified by integrative anal-

ysis of global transcriptional and chromatin landscape changes

induced by CHD1 loss, as measured by RNA-seq and assay

for transposase-accessible chromatin sequencing (ATAC-seq).

To distinguish between transcriptional changes induced by

CHD1 loss alone versus enzalutamide treatment, we profiled

LNCaP/AR cells that were not exposed to enzalutamide after

stable CHD1 knockdown (shCHD1-1 and shCHD1-2; two

different shRNAs) as well as enzalutamide-resistant sublines of

shCHD1-1 and shCHD1-2 derived after passage as xenografts

in enzalutamide-treated mice (shCHD1-XE-1 and shCHD1-XE-

2). ATAC-seq revealed substantial changes in open and closed

chromatin after CHD1 loss, consistent with the function of

CHD1 in chromatin remodeling. Globally, we observed more

than 10,000 new open and closed peaks, mainly in the intronic

and intergenic regions (Figures 5C and 5D). CHD1 loss also led

to global changes in transcriptome profiling (Figure 5E) which

were associated with changes in open chromatin (Figures

S4A–S4D). The transcriptome changes were relatively similar in

both shCHD1 sublines but were quite divergent in the
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Figure 4. CHD1 mRNA Level Is Correlated with Clinical Outcome of Antiandrogen Treatment

(A) Pearson correlation analysis of CHD1mRNA and time of treatment on abiraterone (Abi)/enzalutamide (Enz)/apalutamide (Apa) of a 52 mCRPC patient cohort.

(B) CHD1 expression distribution in all patients of the cohort in (A).

(C) Probability of treatment duration of the top quartile compared with bottom quartile of all patients treated with abiraterone (Abi)/enzalutamide (Enz)/apalu-

tamide (Apa); p value was calculated using Mantel-Cox test.

(D) Cox hazard ratio analysis of the top and bottom quartile of all patients, p value was calculated using log rank test.

(E) Probability of treatment duration of the above median compared with below median of patients who received enzalutamide (Enz)/apalutamide (Apa), p value

was calculated using Mantel-Cox test.

(F) Probability of treatment duration of the above median compared with below median of patients who received abiraterone (Abi), p value was calculated using

Mantel-Cox test.

(G) Pearson correlation analysis ofCHD1mRNA and time of treatment on patients who received enzalutamide (Enz)/apalutamide (Apa), n = 21 (2 patients received

both apalutamide and abiraterone).

(H) Pearson correlation analysis of CHD1 mRNA and time of treatment on patients who received abiraterone (Abi), n = 33.
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Figure 5. Integrated Analysis of RNA-seq and ATAC-Seq Reveals Candidate Transcription Factor Drivers of Enzalutamide Resistance

(A) Relative gene expression of AR and AR target genes in tumors collected from LNCaP/AR xenografts, all normalized and compared with shNT + Veh group.

Mean ± SEM is presented. p values were calculated using two-way ANOVA and numbers of biological replicates are presented. ****p < 0.0001, ***p < 0.001, **p <

0.01, *p < 0.05.

(B) Western blot showing AR and AR targets in tumors collected from LNCaP/AR xenografts. For both (A) and (B), Enz denotes enzalutamide treatment at 10 mg/

kg from day 1 of grafting. Veh denotes 0.5% CMC + 0.1% Tween 80.

(C) Graphical representation of the ATAC-seq peaks changes (gain or loss) in cell lines compared with shNT.

(D) The distribution of ATAC-seq peak locations in different genetic regions. For both (C) and (D), reads from three biological replicates were pooled to calculate

the consensus peaks.

(E) Venn diagram represents the overlap of themost differentially expressed genes in four groups comparedwith shNT. Cutoff values of fold change greater than 2

and false discovery rate % 0. 1 were used. Reads from three biological replicates in each group were used for analysis.

(F) Heatmap represents the expression fold changes (comparing to shNT) of the top 30 genes ranked by RNA-Score, three biological replicates in each group.

(legend continued on next page)
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shCHD1-XE-1 and shCHD1-XE-2 sublines (Figures S5A and 5B),

suggesting that enzalutamide exerts selective pressure that can

result in distinct transcriptional outcomes. Interestingly, gene set

enrichment analysis and pathway analysis revealed significant

downregulation of AR-selective signature genes and enrichment

of several neuron differentiation related pathways in shCHD1-XE

tumor cell lines (Figures S5C and S5D; Table S4).

Because activation of downstream target genes is dependent

on both the abundance of a TF as well as the accessibility of its

cognate binding sites within chromatin, we integrated changes in

TF expression with the presence of their associated binding mo-

tifs in areas of open chromatin. We first calculated an overall

RNA-Score of TFs using the sum of weighted log fold change

to identify those with significant changes in RNA level across

all four CHD1 loss conditions (Figure 5F). We then used motif

analysis within the open peaks identified by ATAC-seq to calcu-

late an overall ATAC-Score by summing the weighted motif dif-

ferential scores derived from the DAStk tool (Figure 5G).

Twenty-two TFs emerged after integration of upregulated TFs

with the enriched motifs of each TF (by multiplying the overall

RNA-Score and ATAC-Score), which we then evaluated as

candidate drivers of enzalutamide resistance in context of

CHD1 loss (Figure 5H and Table S5).

Functional Screen Implicates Four TFs in Mediating
Enzalutamide Resistance
To explore the functional role of these 22 TFs in antiandrogen

resistance, we asked if CRISPR deletion of each TF alone would

restore enzalutamide sensitivity in LNCaP/AR cells with CHD1

knockdown. Four independent guide RNAs for each of the 22

genes were individually cloned into a viral vector with a cis-linked

RFP gene, pooled and introduced into shCHD1 cells in a manner

that resulted in a mixture of RFP-positive (range �50%–90%)

and RFP-negative cells. For cells expressing guides targeting

TFs required for enzalutamide resistance, we reasoned that the

percentage of RFP-positive cells would decline over 7 days

when cultured with enzalutamide (Figure 6A). In control cells in-

fected with a non-targeting guide (sgNT) and in cells expressing

guides targeting 18 of the 22 TFs, the fraction of RFP-positive

cells did not change significantly (Figure 6B). However, RFP-

positive cells were significantly depleted in cells expressing

guides selectively targeting genes encoding each of four TFs:

NR3C1 (encoding GR), POU3F2 (encoding BRN2), TBX2, and

NR2F1 (Figure 6B). Independent experiments confirmed that

CRISPR deletion of each of these four TFs re-sensitized shCHD1

cells to enzalutamide in vitro (Figure 6C). Furthermore, their

upregulation in the context of CHD1 loss was reversible, as

revealed by doxycycline-regulated CHD1 shRNA knockdown

(Figure 6D) and was evident in three other AR-positive human

prostate cancer cell lines (Figures S6A–S6C).

Interestingly, all four TFs have been previously implicated in

resistance to hormone therapy and prostate cancer progression,

often in the context of aberrant lineage specification away from

canonical luminal adenocarcinoma (Arora et al., 2013; Bishop

et al., 2017; Du et al., 2017; Ku et al., 2017; Mu et al., 2017; Nan-

dana et al., 2017; Shi et al., 2019; Sosa et al., 2015). To further

interrogate their roles, we extended our analysis to a panel of

�20 enzalutamide-resistant xenografts, each derived indepen-

dently from LNCaP/AR after CHD1 depletion by either shRNA

or CRISPR deletion. Each of the four TFs had elevated expres-

sion in some but not all xenografts across this panel, supporting

a heterogeneous profile across this isogenic series of sublines

(Figure 7A). NR3C1 was most frequently and substantially upre-

gulated, but multiple sublines also had upregulation of NR2F1,

TBX2, or POU3F2, sometimes without concurrent NR3C1 upre-

gulation. Immunofluorescence and immunohistochemical stain-

ing revealed heterogeneity within the shCHD1-XE-1 cell lines

and in shCHD1 tumors resistant to enzalutamide, as seen by

increased levels of NR2F1 in some cells and both NR2F1 and

GR in other cells (Figures S7A–S7D). Collectively, this pattern

and the results from an inducible shCHD1 model suggest a state

of chromatin plasticity and enhanced heterogeneity, initiated by

CHD1 loss, which enables upregulation of distinct sets of genes

in response to selective pressure.

This concept is further supported by in vitro studies where we

examined the effect of brief exposure to enzalutamide on

expression of each of the four TFs in CHD1 wild-type cells or

in those with CHD1 depletion (by shRNA or CRISPR) (Figure 7B).

Either CHD1 loss or enzalutamide exposure was sufficient to

modestly upregulate each of the four TFs, but transcriptional

changes were more substantial under both conditions, particu-

larly in the CHD1-deleted, enzalutamide-resistant xenograft-

derived cell lines (Figures 7A and 7B). This hypothesis is also

supported by RNA-seq data from the previously mentioned

cohort of mCRPC patients (Abida et al., 2019), in which we

examined the co-association of CHD1 levels with each of these

four TFs across 212 tumors. Unsupervised clustering analysis of

just these five genes identified five distinct clusters (Figure 7C).

Cluster 5 (CHD1 high) is noteworthy because the relative expres-

sion of each of the four TFs is low; whereas clusters 2, 3, and 4

(CHD1 low) each displays relatively higher expression of

NR2F1 and POU3F2 (cluster 3), TBX2 (cluster 2), orNR3C1 (clus-

ter 4). Cluster 1 (also CHD1 low) is an outlier to this pattern

because all four TFs are also low, which could be an indication

of even greater heterogeneity beyond that elicited from the

LNCaP/AR model. The identity of additional plasticity drivers

could emerge through characterization of transcriptional and

chromatin landscape changes across other models (Alizadeh

et al., 2015).

An underlying assumption of our chromatin plasticity model is

that the observed changes in TF activity promote enzalutamide

resistance through loss of luminal lineage identity. Indeed, we

observed altered expression of many canonical lineage-specific

genes in the same panel of CHD1-deleted, enzalutamide-resis-

tant xenografts that displayed heterogeneous upregulation of

the four TFs (Figure 7D). For example, all tumors showed consis-

tent downregulation of luminal marker genes (AR, KRT8, and

KRT18), some had increased levels of basal marker genes

(G) Heatmap represents themotif differential changes (compared with shNT) of the top 30 genes ranked by ATAC-Score, three biological replicates in each group.

(H) Rank of candidate transcription factors (TFs) are shown based on the adjusted Combined-Score. Top candidate TFs selected for functional CRISPR library

screen are presented in red.

See also Figures S4 and S5 and Table S4.
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(KRT5 and TP63), and nearly all showed upregulation of genes,

such as SNAI2, TWIST1, SNAI1, and ZEB1 that specify epithelial

to mesenchymal transition (EMT). Intriguingly, these changes in

lineage gene expression were rapid (evident within only 48 h after

doxycycline-inducible CHD1 knockdown) and reversible (Fig-

ures S7E and S7F). Collectively, we propose that CHD1 loss es-

tablishes an altered and plastic chromatin landscape which, in

the face of stresses, such as antiandrogen therapy, enables

resistant subclones to emerge through activation of alternative,

non-luminal lineage programs that reduce dependence on AR.

GR Inhibition Restores Enzalutamide Sensitivity in
CHD1-Deficient Tumors with Increased GR Expression
Identification of GR as one of the four critical TFs upregulated by

CHD1 loss was of particular interest based on previous reports

implicating GR in enzalutamide resistance (Arora et al., 2013;

Isikbay et al., 2014, Li et al., 2017) and led us to reexamine the

molecular basis of GR upregulation in LREX cells, a previously

reported enzalutamide-resistant subline of LNCaP/AR cells (Ar-

ora et al., 2013). Remarkably, CHD1 mRNA and protein levels

A

D

B

C

Figure 6. Functional CRISPR Screen Iden-

tifies Four Alternative TFs as Drivers of Anti-

androgen Resistance

(A) Schematic representation of the functional

CRISPR library screen in shCHD1 LNCaP/AR cells.

shCHD1 cells were transduced with Cas9 and

pooled single guide RNAs targeting individual TFs

and achieved cell mixtures of 50%–90% RFP-

positive cells (shCHD1 + sgTF) versus RFP-nega-

tive cells (shCHD1 only).

(B) Scatterplot summarizing the results of the

screen. Each dot represents pooled guide RNAs

targeting a specific gene. The x axis is the per-

centage of RFP cells at day 0 and the y axis is

the percentage at day 7. The green dot identifies

the sgNT control. Genes that scored positive in the

screen are highlighted in red.

(C) Relative cell number of LNCaP/AR cells trans-

duced with annotated guide RNAs, normalized to

shNT + sgNT + Veh group. Cells were treated with

10 mMenzalutamide (Enz) or DMSO (Veh) for 7 days

and cell numbers were counted. Mean ± SEM is

presented, and p values were calculated by multi-

ple t tests, with three biological replicates in each

group.

(D) Relative gene expression level of the four TF

genes in LNCaP/AR cells transduced with anno-

tated inducible shRNAs at various time points.

Mean ± SEM is presented, p values were calcu-

lated by two-way ANOVA, all compared with 0 h,

with three technical replicates in each group. ****p <

0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.

See also Figure S6 and Table S5.

were significantly lower in LREX

compared with LNCaP/AR cells (Figures

S8A and S8B). We also found robust upre-

gulation of GRmRNA (NR3C1) and protein

(Figures 8A and 8B), as well as down-

stream GR target genes (SGK1 and

NPC1), across a panel of enzalutamide-

resistant xenografts after CHD1 deletion (by shRNA or CRISPR)

(Figure 8A). These findings are notable because CHD1 loss re-

sulted in increased GR expression without enzalutamide chal-

lenge, in contrast to previous work in CHD1 intact models (Arora

et al., 2013; Shah et al., 2017) (Figures 8A, 8B, and S8C).

To determine if sustained GR expression is required to main-

tain enzalutamide resistance in CHD1-deleted tumors with

increasedGR expression, we pursued both genetic and pharma-

cologic strategies. First, we knocked down GR in shCHD1-XE-1,

the subline with the highest GR level, using two independent GR

hairpins and observed substantial growth inhibition in vitro (Fig-

ures 8C, 8D, and S8D). For pharmacologic inhibition of GR, we

turned to inhibitors of BET bromodomain proteins, which we pre-

viously reported can re-sensitize CHD1 intact CRPC tumors with

increased GR levels to enzalutamide by inhibiting GR expression

(Shah et al., 2017). In vitro experiments using two different BET

inhibitors (JQ1 and CPI-0610) confirmed that GR expression in

CHD1-deficient cells is BET dependent (Figure S8E), similar to

data in the LREX model (Arora et al., 2013; Shah et al., 2017).

Interestingly, the degree of BET-dependent GR expression
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was substantially greater in CHD1-deficient cells that had not

been previously exposed to enzalutamide (Figure S8E). For

in vivo experiments, we used CPI-0610 due to its more favorable

pharmacologic properties and observed more tumor regres-

sions inmice treated with enzalutamide + CPI-0610 versus either

drug alone (Figures S8F and S8G) (Albrecht et al., 2016).

DISCUSSION

It is widely appreciated that the efficacy of targeted cancer ther-

apies can be negatively affected by tumor heterogeneity, partic-

ularly in the context of concurrent genomic alterations that can

mitigate dependence on the primary oncogenic driver. Cata-

loging these concurrent alterations in a comprehensive way

could better inform patient selection for targeted therapies and

provide insight into how to maximize treatment response (Aliza-

deh et al., 2015; Li et al., 2016). The in vivo shRNA library

screening strategy reported here, using the next-generation anti-

androgen enzalutamide inmetastatic CRPC as an example, illus-

trates the feasibility of this approach as well as the challenges.

Two critical learnings were: (1) the use of relatively small shRNA

pools (�100 different hairpins) to ensure adequate representa-

tion of each hairpin and (2) the decision to performmultiple inde-

pendent tumor inoculations (10 per pool). The latter decision al-

lowed us to eliminate bystander shRNAs that are enriched solely

on the basis of the stochastic growth of individual cells that can

contribute disproportionately to the final composition of the tu-

mor (sometimes called jackpot clones). The wisdom of this deci-

sion is apparent in the fact that at least three of the eight hits were

validated in secondary screens. This approach mandates use of

a larger number of animals, but this can be balanced by using
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Figure 7. CHD1 Loss Enhanced Prostate

Cancer Cell Heterogeneity and Lineage

Plasticity

(A) Heatmap represents the expression fold

changes (qPCR) of the top four resistance driver

genes and CHD1 in different xenografts derived

cell lines, three technical replicates for each line.

(B) Heatmap represents the expression fold

changes of the top four resistant driver genes

(qPCR) in shCHD1 cell line treated with 10 mM en-

zalutamide (Enz) in charcoal-stripped serum me-

dium, three biological replicates for each line.

(C) Unsupervised clustering of 212 patients based

on the gene expression level (Z score) ofCHD1 and

the 4 TFs.

(D) Relative gene expression level (qPCR) of line-

age-specific markers and EMT genes in selective

shCHD1-XE and sgCHD1-XE cell lines, three

technical replicates for each line.

See also Figure S7.

smaller, focused libraries (such as the

prostate deletome described here)

instead of whole genome libraries.

A major insight from our characteriza-

tion of howCHD1 loss promotes enzaluta-

mide resistance is the role of an altered

chromatin landscape in establishing a cell state that enables

more rapid adaptation to environmental stresses, such as anti-

androgen therapy than can occur in CHD1-intact tumor cells.

One consequence of this ‘‘cell state model’’ is the opportunity

for multiple different mechanisms of resistance to arise, as illus-

trated by the four different TFs identified here (Figure 8E). This

mechanism has parallels with work in small-cell lung cancer

showing altered chromatin landscapes in primary versus meta-

static tumors due to genomic amplification of the NFIB, which

encodes a TF that promotes neuroendocrine differentiation

through chromatin pioneering activity (Denny et al., 2016; Yang

et al., 2018). Such epigenetic reorganization can also be

observed in hematological malignancies (Hassan et al., 2017).

Although this study was focused solely on identifying enzalu-

tamide resistance mechanisms linked toCHD1 loss, it is remark-

able that all four of the TFs identified have been previously impli-

cated in advanced prostate cancer progression. GR is intriguing

in light of previous work showing that GR upregulation is an

adaptive resistance mechanism (Arora et al., 2013). Indeed, re-

examination of those data, in light of these findings, suggests

that loss of CHD1 may be the mechanism of GR upregulation

in these earlier models. BRN2 is similarly intriguing based on

recent evidence that this neural TF drives neuroendocrine differ-

entiation of tumor cells and thereby promotes enzalutamide

resistance through loss of luminal lineage features (Bishop

et al., 2017). TBX2, a T-box family TF, has been shown to induce

EMT (reduced E-cadherin, increased N-cadherin) and WNT

signaling, resulting in enhanced metastasis in prostate cancer

models (Du et al., 2017; Nandana et al., 2017). Finally, the orphan

nuclear receptor NR2F1 has been linked to tumor cell dormancy

in prostate cancer through induction of pluripotency genes, such

as SOX2 and NANOG (Sosa et al., 2015).
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Our data demonstrate that CHD1 loss in CRPC promotes a

state of intratumoral heterogeneity, but further work is needed

to determine whether these heterogeneous mechanisms func-

tion independently or collaboratively. It is worth noting that plu-

ripotency genes, such as SOX2 have been implicated in several

examples of lineage plasticity, including those mediated by
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Figure 8. GR Inhibition Has Significant Antitumor Effect on Antiandrogen-Resistant Tumors with CHD1 Loss

(A) Relative gene expression ofNR3C1 andGR target genes in tumors collected from LNCaP/AR xenografts, all normalized and comparedwith shNT + Veh group.

Mean ± SEM is presented. p values were calculated using two-way ANOVA, and numbers of biological replicates are presented.

(B) Western blot showing AR, GR, and their downstream target genes in xenografted LNCaP/AR tumors. For (A) and (B), Enz denotes enzalutamide at 10 mg/kg

from day 1 of grafting. Veh denotes 0.5% CMC + 0.1% Tween 80.

(C) Histograms of representative FACS-based competition assay showing the distribution of shCHD1-XE-1 cells (RFP-negative) versus shCHD1-XE-1 cells

transduced with shGR (RFP-positive). The distributions on different days are presented in different colors.

(D) Relative cell number of shCHD1-XE-1 cells transduced with annotated inducible shRNAs, normalized to shCHD1-XE-1 + Veh. Cells were treated with 250 ng/

mL doxycycline for 48 h, and then 7 days of 10 mM enzalutamide (Enz) or DMSO (Veh) before cell numbers were counted. Mean ± SEM is presented, and p values

were calculated by two-way ANOVA, with three biological replicates in each group.

(E) Model depicting the chromatin dysregulation (plasticity) and antiandrogen resistance in mCRPC due to CHD1 loss.

For all panels, ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. See also Figure S8.
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BRN2 andNR2F1, aswell as in other examples, such asRB1 and

TP53 loss (Ku et al., 2017; Mu et al., 2017; Park et al., 2018). Sin-

gle-cell analysis should bring greater clarity to this heterogeneity,

including the possibility that these TFs function in collaborative,

hierarchical signaling networks (Goldman et al., 2019).

It is important to place our model of how CHD1 loss promotes

antiandrogen resistance mechanisms in the context of previous

work onCHD1 in prostate cancer. First, it is clear thatChd1 dele-

tion alone in themouse prostate is not sufficient to induce cancer

(Augello et al., 2019; Shenoy et al., 2017); however, cancers do

emerge after co-deletion of Map3k7 (Rodrigues et al., 2015) or

Pten (Augello et al., 2019). Conversely, CHD1 is reported to

have a synthetic lethal interaction with PTEN in some breast

and PCa models (Zhao et al., 2017), presumably due to

context-specific effects. Intriguingly, Chd1�/�;Map3k7�/� pros-

tate cancers have neuroendocrine features, consistent with our

observation that CHD1 loss can promote expression of aberrant

lineage programs. Chromatin immunoprecipitation sequencing

studies of the CHD1 and AR cistromes suggest a regulatory

role for CHD1, which directs (or restricts) AR to canonical target

genes in normal prostate tissue (Augello et al., 2019). This pattern

is disrupted in the setting of CHD1 loss, where aberrant AR cis-

tromes are observed that more closely resemble those seen in

prostate cancers (Augello et al., 2019). Collectively, the pheno-

types of neuroendocrine gene expression and altered AR

cistromes are consistent with our data showing that CHD1 loss

establishes an altered chromatin landscape, which enables acti-

vation of aberrant lineage programs as a mechanism to escape

antiandrogen therapy.

In closing, it is worth considering the clinical implications of

CHD1 loss in prostate cancer. Our analysis of a limited cohort

suggests that CRPCpatients with lowCHD1 expression respond

poorly to next-generation antiandrogen therapies. It will be

important to validate this finding with a larger cohort, with inclu-

sion of patients with genomic CHD1 deletion as these were un-

derrepresented in our study.
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lentiCRISPR v2 Addgene Cat #52961

pLKO5.sgRNA.EFS.tRFP Addgene Cat #57823
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PANTHER Mi et al., 2018 http://www.pantherdb.org
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BEDTools (v2.26.0) Quinlan and Hall, 2010 https://bedtools.readthedocs.io/
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MACS (v2.1.0) Feng et al., 2012 https://github.com/taoliu/MACS

R (v3.3.2) package DiffBind (v2.2.12) R Core Team, 2016;

Stark and Brown, 2011

https://bioconductor.org/packages/

release/bioc/html/DiffBind.html
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Ping

Mu (ping.mu@utsouthwestern.edu). All cell lines, plasmids and other reagents generated in this study are available from the Lead

Contact with a completed Materials Transfer Agreement if there is potential for commercial application.

EXPERIMENTAL MODEL AND SUBJECT DETAIL

SCID Mouse In Vivo Xenografts
All animal experiments were performed in compliance with the guidelines of the Animal Resource Center of UT Southwestern and

Research Animal Resource Center of the MSKCC. LNCaP/AR in vivo xenograft experiments were conducted by subcutaneous in-

jection of 2 3 106 LNCaP/AR cells (100 ml in 50% Matrigel, BD Biosciences, and 50% growth media) into the flanks of castrated

male SCID mice on both sides. Daily gavage treatment with 10 mg/kg enzalutamide or vehicle (1% carboxymethyl cellulose,

0.1% Tween 80, 5%DMSO) was initiated one day after the injection. Once tumors were noticeable, tumor size wasmeasured weekly

by tumor measuring system Peira TM900 (Peira bvba, Belgium). For CWR22Pc in vivo experiments (Figures S3E and S3F), 2 3 106

CWR22Pc cells were injected subcutaneously into the flanks of intact male SCID mice and both castration and enzalutamide treat-

ment (10 mg/kg) was initiated on day 27 of xenografting. For in vivo experiment in Figures S8F and S8G, 10 mg/kg enzalutamide an-

d/or 60 mg/kg CPI-0610 were given after 5 weeks of enzalutamide alone administration, when tumors were around 200 mm3 size in

average. CPI-0610 and JQ1 are commercially available from Selleck Chemicals, details listed in Key Resources Table.

Human Prostate Cancer Cell Lines and Mouse Organoids
LNCaP/AR, CWR22Pc and LAPC4 prostate cancer cell lines were generated and maintained as previously described(Chen et al.,

2003; Klein et al., 1997; Mu et al., 2017). E006AA cells were purchased from Millipore (Sigma-Aldrich) (#SCC102). LNCaP/AR,

CWR22Pc and LAPC4 cells were cultured in RPMI medium supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine,

1% penicillin-streptomycin, 1% HEPES, and 1% sodium pyruvate (denoted as normal culture medium). E006AA cells were cultured

in DMEMmedium supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, 1% penicillin-streptomycin, 1% HEPES, and

1% sodium pyruvate. LNCaP/AR cells were passaged every 3-5 days at a 1:6 ratio, CWR22Pc cells were passaged every 3-5 days at

1:3 ratio. LAPC4 cells were passed every 5-7 days at 1:2 ratio. E006AA cells were passaged every 3-5 days at 1:5 ratio. When treated

with 10 mMenzalutamide LNCaP/AR cells were cultured in RPMImedium supplementedwith 10%charcoal-stripped serum (denoted

asCSSmedium). All of the xenograft tumor-derived LNCaP/AR subsequent cell lines were developed fromdifferent individual tumors

(treatment details as described in main text) that were harvested, disaggregated with collagenase treatments, and thenmaintained in

normal culture medium. After harvesting, cells were cultured on Poly-D-Lysine-coated plates with 2 mg/ml puromycin (Gibco

#A1113803) until confluence and were then maintained on standard tissue culture dishes. All cell cultures were assessed for myco-

plasma monthly via the highly sensitive MycoAlertTM PLUS Mycoplasma Detection kit from Lonza (Cat #LT07-710). Cell line identi-

fication was validated each year through the human STR profiling cell authentication provided by the UT Southwestern genomic

sequencing core and compared to ATCC cell line profiles. Pten-/- mouse organoids were generated from Pb-Cre4-Ptenflox/flox

mice as previously described (Chen et al., 2013). This organoid (218-5A) is cultured in 3D Matrigel according to established protocol

(Karthaus et al., 2014). This organoid is split at 1:3 ratio every 6 days by trypsin or sterile glass pipette.

shRNA and CRISPR Model Generation
Lentiviral or retroviral transduction of cells for shRNA or guide RNA experiments was performed as previously described with

some modifications (Mu et al., 2017; Wheeler et al., 2015). Specifically, retroviral virus was used for shRNA library transduction

in Figure 1, as well as shCHD1 KD in Figures 3E, 8A, 8C, 8D, and S2A–S2E. Lentiviral virus was used for CRISPR based KO in

Figures 3A–3C, 6C, and S1C and inducible or stable shRNA constructs based KD in Figures S2F–S2H, S3, 6D, 8C, and 8D. For

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MEME suite (v4.11.1) Bailey et al., 2009

Bailey et al., 2015

http://meme-suite.org

DAStk (v0.1.5) Tripodi et al., 2018 https://pypi.org/project/DAStk

HOMER (v4.9) Heinz et al., 2010 http://homer.ucsd.edu/homer/

ngs/annotation.html

deepTools (v2.5.0) Ramirez et al., 2016 http://homer.ucsd.edu/homer/

ngs/annotation.html

hclust M€ullner, 2013 http://danifold.net/fastcluster.html

pheatmap R Core Team, 2016 https://cran.r-project.org/web/

packages/pheatmap/index.html

Cancer Cell 37, 1–15.e1–e11, April 13, 2020 e4

Please cite this article in press as: Zhang et al., Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chro-
matin Dysregulation, Cancer Cell (2020), https://doi.org/10.1016/j.ccell.2020.03.001

http://meme-suite.org
https://pypi.org/project/DAStk
http://homer.ucsd.edu/homer/ngs/annotation.html
http://homer.ucsd.edu/homer/ngs/annotation.html
http://homer.ucsd.edu/homer/ngs/annotation.html
http://homer.ucsd.edu/homer/ngs/annotation.html
http://danifold.net/fastcluster.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html


the miR-E based shRNA library transduction, LNCaP/AR cells were transduced with pooled retroviral shRNA hairpins with a 5-

20% transduction efficiency to ensure that most shRNAs are transduced at single-copy level. Two days after transduction, in-

fected LNCaP/AR cells were selected with 2 mg/ml puromycin for four days to select a pure GFP positive population. Sequences

of all the library shRNAs are listed in Table S2. For all other shRNA or CRISPR mediated modifications, unless otherwise noted,

cells were seeded at 400,000 cells per well in 2 ml of media in 6-well plates. The next day, media was replaced with media

containing 50% of virus and 50% of fresh culture medium, along with 5 mg/ml polybrene. The lentiviral or retroviral virus con-

taining media was removed after 24 hours and replaced with regular culture medium. Three days post transduction, the cells

were selected with 2 mg/ml puromycin for 4 days or 5 mg/ml blasticidin, as described below. The backbones and sequences of

all the shRNAs and CRISPR guide RNAs are listed in the Method Details and Key Resources Table.

METHOD DETAILS

Generation of the Human PCa Deletome and Construction of the miR-E shRNA Library
To define a comprehensive human prostate cancer deletome, we developed an integrative pipeline to analyze the genomic copy

number alterations (CNV) and mRNA expression data from multiple independent genomic studies. First, we examined the original

CNV data of the 2010 Taylor dataset and filtered the list of deleted genes present in regions of recurrent focal and chromosome

arm length deletion in more than 15% of the prostate cancer patients (generated 2 lists based on either the published CNV or the

R.A.E. output) (Taylor et al., 2008; 2010). Then we integrated these CNV data and the corresponding gene expression data to

further filtered the recurrent deletion events that are associated with decreased gene expression based on matched gene expres-

sion data. In parallel, we utilized this pipeline analysis for another three independent genomic studies and generated 4 additional

deleted gene lists, including the 2012 Barbieri dataset, the 2012 Grasso dataset (2 lists based on either the published CNV or the

R.A.E. output) and the TCGA dataset (Barbieri et al., 2012; Grasso et al., 2012; Network, 2015). Two more deleted gene lists were

generated using similar approaches as our integrative pipeline and therefore added into our final 8 deleted gene lists, including the

2007 Kim dataset and the 2009 Holcomb dataset(Holcomb et al., 2009; Kim et al., 2007). As expected, these 8 deleted gene lists

substantially overlap. We then combined the 8 deleted gene lists and refined the final human PCa deletome of 730 genes by only

incorporating the genes whose deletion were confirmed by at least two independent studies (Table S1) (Two genes PTEN and

DACH1 were removed from the list because they were already deleted in LNCaP/AR cells) (Taylor et al., 2010). To identify genes

whose protein product inhibition can confer resistance to antiandrogen therapy in prostate cancer, we built a custom shRNA li-

brary targeting 730 genes (5-6 shRNAs/gene, total 4234 shRNAs) (Table S2). The shRNAs were cloned in a LEPC (aka MLP-E)

vector, a constitutive expression vector that was previously optimized for more efficient knockdown, by PCR-cloning a pool of

oligonucleotides synthesized on 12k customized arrays (CustomArrays) as previously described (Zuber et al., 2010). The shRNAs

were designed using an algorithm that predicts potent shRNAs as previously described (Pelossof et al., 2017). The library was sub-

cloned into 43 independent pools each pool consisting of �100 shRNAs, to ensure that shRNA representation was not lost after

grafting the tumors cells in vivo.

In Vivo shRNA Mediated Screen and HiSeq
Each pool of the library was transduced into humanCRPC tumor cell line LNCaP/AR at lowmultiplicity of infection (MOI < 1), to ensure

a single retroviral integration per cell and achieving a representation of each shRNA in an average of 20,000 cells. Transduced

LNCaP/AR cells were selected for 4 days using 2 mg/ml puromycin (Invitrogen) and 2million cells were subcutaneously injected bilat-

erally into 5 castrated SCIDmice to preserve library representation throughout the experiment (because of unexpected mice loss, we

have added additional mice in several pools to get enough tumors). As a negative control group, LNCaP/AR cells transduced with

shNT were also injected into 10 castrated mice. All animals were treated with enzalutamide (10 mg/kg/day) one day after the day

of bilateral injection to mimic the clinical scenario of enzalutamide usage, with the exception of 5 mice in the negative control group

being treated with vehicle. As described in the main text, based on the results of pilot experiments (Figures S1A and S1B), we only

harvested the tumors that reached 100mm3 burden by week 16, before the appearance of background tumors (which usually require

more than�19weeks to arise) based on the rationale that the shRNAs targeting candidate resistance biomarkers should confer resis-

tance significantly quicker than the stochastic enrichment of the tumor initiating cells (‘‘jackpot effect’’).

Genomic DNA from plasmids, pregrafts, and resistant tumors was isolated by two rounds of phenol extraction using Phase-

Lock tubes (5prime) followed by isopropanol precipitation. The normalized reads of all shRNAs present in resistant tumors or

starting materials were quantified using HiSeq 2500 sequencing of shRNA guide strands PCR amplified from the isolated

genomic DNA, as previously described (Zuber et al., 2010; 2011). Sequence processing was performed using a customized Gal-

axy platform as previously described (Zuber et al., 2011). For each shRNA and condition, the number of matching reads was

normalized to the total number of library-specific reads per lane (10 million total reads per pool) and used for further analysis.

We only obtained 21 pools of reads in pregrafts therefore reads in plasmids were used as starting material instead. All the HiSeq

sequencing results (FASTQ) and normalized reads files were deposited to GEO: GSE127957. To adapt a probabilistic ranking

algorithm RIGER-E (RNAi Gene Enrichment Ranking) to analyze the HiSeq results, we recorded the hairpin reads in the tumors

which did not score by week 16 as ‘‘0’’ because they failed to enrich quicker than stochastically enriched hairpins, in order to

have a working matrix for a probabilistic statistic model. RIGER analysis was performed as previously described (Golden et al.,

2017) and the data matrix was deposited to GEO: GSE127957. We then applied two additional cut-offs to further filter out the

e5 Cancer Cell 37, 1–15.e1–e11, April 13, 2020

Please cite this article in press as: Zhang et al., Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chro-
matin Dysregulation, Cancer Cell (2020), https://doi.org/10.1016/j.ccell.2020.03.001



false positive candidate genes. We chose ‘‘enriched in more than 8% of total tumor xenografted’’ as a first cut-off based on the

stochastic enrichment ratio of negative control gene TBC1D4. We chose ‘‘4 out of 6 hairpins enriched’’ as the second cut-off

based on a triangle thresholding method (Zack et al., 1977) and the results of our pilot experiments. The enrichment of each

shRNAs was determined by comparing the normalized reads in the resistant tumors with the normalized reads in plasmids.

Individual Plasmid Construction and Virus Production
The retroviral (LEPG) and lentiviral (SGEP, LT3GEPIR) miR-E based expression vectors generous gifts from Dr. Johannes Zuber

(Research Institute of Molecular Pathology, Vienna, Austria), and described previously(Zuber et al., 2011). LEPC, SCEP and LT3CE-

PIR vectors were constructed by switching the GFP cassette in the previous three vectors with a mCherry cassette as described

previously (Mu et al., 2017).

The sequences of shRNA hairpins are listed below:

LEPG-shNT:

TGCTGTTGACAGTGAGCGCAGGAATTATAATGCTTATCTATAGTGAAGCCACAGATGTATAGATAAGCATTATAATTCCTATGCCT

ACTGCCTCGGA

LEPG-shCHD1-1:

TGCTGTTGACAGTGAGCGACAGGTTAACATTTTAGATAAATAGTGAAGCCACAGATGTATTTATCTAAAATGTTAACCTGGTGCCT

ACTGCCTCGGACTTCAAGGGGCTAGAATTC

LEPG-shCHD1-2:

TGCTGTTGACAGTGAGCGACAGGAAATGGATATAGATGAATAGTGAAGCCACAGATGTATTCATCTATATCCATTTCCTGGTGCC

TACTGCCTCGGACTTCAAGGGGCTAGAATTC

LEPG-shCHD1-3:

TGCTGTTGACAGTGAGCGCAACGTTATATATGACAAATTATAGTGAAGCCACAGATGTATAATTTGTCATATATAACGTTTTGCCTA

CTGCCTCGGACTTCAAGGGGCTAGAATTC

LEPG-shCHD1-4:

TGCTGTTGACAGTGAGCGACAGGAGAGATTCAGTATTTAATAGTGAAGCCACAGATGTATTAAATACTGAATCTCTCCTGGTGCC

TACTGCCTCGGACTTCAAGGGGCTAGAATTC

LEPG-shCHD1-5:

TGCTGTTGACAGTGAGCGCTAGGCGGTTTATCAAGAGCTATAGTGAAGCCACAGATGTATAGCTCTTGATAAACCGCCTAATGCC

TACTGCCTCGGACTTCAAGGGGCTAGAATTC

LT3CEPIR-shGR-1:

TGCTGTTGACAGTGAGCGCCCAAAGCAGTTTCACTCTCAATAGTGAAGCCACAGATGTATTGAGAGTGAAACTGCTTTGGATGCC

TACTGCCTCGGA

LT3CEPIR-shGR-2:

TGCTGTTGACAGTGAGCGAAAGCTGTAAAGTTTTCTTCAATAGTGAAGCCACAGATGTATTGAAGAAAACTTTACAGCTTCTGCCT

ACTGCCTCGGA

LT3CEPIR-shCHD1-1:

TGCTGTTGACAGTGAGCGACAGGTTAACATTTTAGATAAATAGTGAAGCCACAGATGTATTTATCTAAAATGTTAACCTGGTGCCT

ACTGCCTCGGACTTCAAGGGGCTAGAATTC

LT3CEPIR-shCHD1-2:

TGCTGTTGACAGTGAGCGACAGGAAATGGATATAGATGAATAGTGAAGCCACAGATGTATTCATCTATATCCATTTCCTGGTGCCT

ACTGCCTCGGACTTCAAGGGGCTAGAATTC

The All-In-One lentiCRISPR v2 purchased from Addgene (Plasmid #52961) was used to generate the sgCHD1, sgmChd1(for

mouse organoid experiment) and sgPTEN constructs. The empty vector served as the sgNT control. The guide RNAs were designed

using the online CRISPR designing tool at Benchling (https://benchling.com).

The sequences of sgRNAs are listed below:

lentiCRISPRv2-sgCHD1-1-F: CACCGTCAGCTCCATCAACTTTCGG

lentiCRISPRv2-sgCHD1-1-R: AAACCCGAAAGTTGATGGAGCTGAC

lentiCRISPRv2-sgCHD1-2-F: CACCGGATTTATGGATTGTCGGATT

lentiCRISPRv2-sgCHD1-2-R: AAACAATCCGACAATCCATAAATCC

lentiCRISPRv2-sgmChd1-1-F: CACCGAAAGTGTTAGAAATGGCAG

lentiCRISPRv2-sgmChd1-1-R: AAACCTGCCATTTCTAACACTTTC

lentiCRISPRv2-sgmChd1-2-F: CACCGCAACATTCACGGGTTTCCTG

lentiCRISPRv2-sgmChd1-2-R: AAACCAGGAAACCCGTGAATGTTGC

lentiCRISPRv2-sgPTEN-F: CACCGAAACAAAAGGAGATATCAAG

lentiCRISPRv2-sgPTEN-R: AAACCTTGATATCTCCTTTTGTTTC

All information related to constructs used for CRISPR function screening are discussed below in the functional screening section.

The CHD1 expressing vectors pCDH-EF1-Chd1-T2A-copGFP and pCDH-EF1-Chd1-P2A-puro were generous gift from Dr. Ping

Chi’s laboratory at MSKCC.
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FACS-Based Growth Competition Assay
LNCaP/AR cells were transducedwith 5 different shRNAs targetingCHD1 or shNT individually with a viral infection efficiency of�20%,

verified byGFP percentage by FACS. The competition cell mixture of�20% transduced LNCaP/AR cells and�80%wild-type cells was

treated with 10 mMenzalutamide and the percentage of GFP positive cells weremeasured by FACSon day 0, day 6, day 12, day 17 and

day 24. Relative cell number fold change was calculated as follows:
T23Y
T13XO

T23ð1�YÞ
T13ð1�XÞ=

Y3ð1�XÞ
X3ð1�YÞ , where T1 is the total cell number of cell mixture on day 0 and T2 is the total cell number on day 6, 12,17, or

24; X is the percentage of GFP positive cells measured on day 0 and Y is the percentage of GFP positive cells measured on day

6,12,17, or 24; then 1-X is the percentage of wild-type uninfected cells on day 0 and 1-Y is the percentage of wild-type uninfected

cells on day 6, 12, 17 or 24. FACS-based competition assay in Figures 8C and S8D is analogous to the one in Figures 3D and 3E

described above, except the shCHD1-XE-1 cells transduced with LT3CEPIR-shGRs were treated with doxycycline for 48 hours at

250 ng/ml before the day 0 was measured.

Cell Growth Assay, Cell Viability Assays and Dose Response Curve
LNCaP/AR cells transduced with CRISPR/sgRNAs were seeded at 20,000 cells per well in a 24-well cell culture plate, in CSS

medium and treated with enzalutamide (10 mM) or vehicle (DMSO) for 6 days. Cell numbers were counted using a Countess II FL

automatic cell counter (Invitrogen) on day 7 and the relative cell growth (Enz/DMSO) was calculated. Cell growth assays were

conducted in triplicate and mean ± SEM were reported. Dose response curve and all other cell viability assays were measured

by CellTiter-Glo luminescent cell viability assay (Promega cat #7570). 4000 LNCaP/AR cells were seeded in 96-well dish and

treated with different dosages of enzalutamide for 3 days before performing the assay. 3000 CWR22Pc cells were seeded in

96-well plate and treated with different dosages of enzalutamide for 6 days before performing the assay. 5000 LAPC4 cells

were seeded in 96-well plate with different dosages of enzalutamide for 12 days before perform the assay. 500 E006AA cells

were seeded in 3D Matrigel in human organoid media (Gao et al., 2014; Karthaus et al., 2014) with enzalutamide for 6 days,

because E006AA cells are not very sensitive to enzalutamide treatment in 2D culture condition. Mouse organoid were seeded

in 3D Matrigel (1000 cells/per 50 ml sphere) in mouse organoid media (Karthaus et al., 2014) with 1 mM enzalutamide for 6 days

before the cell viability was read.

Gene Expression Assay by qPCR
Total RNA from cells or homogenized tissues was extracted using Trizol (Ambion, Cat 15596018) following manufacturer’s

instructions. cDNA was made using the SuperScript� IV VILO� Master Mix with ezDNase� Enzyme (Thermo Fisher,

11766500) following manufacturer’s instructions, with 200 ng/ml RNA template. 2X PowerUp� SYBR� Green Master Mix

(Thermo Fisher, A25778) was used in the amplification of the cDNA. Assays were performed in triplicate and normalized

to endogenous b-Actin expression. Heatmaps represent the gene expression difference were generated by prism 8, using

the log10 of expression fold change compared to control cell lines (shNT or sgNT transduced LNCaP/AR). Qiagen RT2

qPCR primer assays are used as primers for gene expression detection, unless otherwise noted. Individual primer assays

are listed, as well as in Table S6.

AR, Qiagen RT2, Cat# PPH01016A

KLK3, Qiagen RT2, Cat# PPH01002B

NKX3-1, Qiagen RT2, Cat# PPH02267C

TMPRSS2, Qiagen RT2, Cat# PPH02262C

NDRG1, Qiagen RT2, Cat# PPH02202B

NR3C1 (GR), Qiagen RT2, Cat# PPH02652A

TBX2, Origene, F-AGCAGTGGATGGCTAAGCCTGT

R-GGATGTCGTTGGCTCGCACTAT

NR2F1, Origene, F-TGCCTCAAAGCCATCGTGCTGT

R-CAGCAGCAGTTTGCCAAAACGG

POU3F2, Origene, F-GTGTTCTCGCAGACCACCATCT

R-GCTGCGATCTTGTCTATGCTCG

SGK1, Qiagen RT2, Cat# PPH00387F

NPC1, Sigma KiCqStart, Cat#H_NPC1_1, 4864

KRT8, Qiagen RT2, Cat# PPH02214F

KRT18, Qiagen RT2, Cat# PPH00452F

KRT5, Qiagen RT2, Cat# PPH02625F

KRT14, Qiagen RT2, Cat# PPH02389A

TP63, Qiagen RT2, Cat# PPH01032F

SYP, Qiagen RT2, Cat# PPH00717A

CHGA, Qiagen RT2, Cat# PPH01181A

ENO2, Qiagen RT2, Cat# PPH02058A

SOX2, Qiagen RT2, Cat# PPH02471A
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SNAI2, Qiagen RT2, Cat# PPH02475A

TWIST1, Qiagen RT2, Cat# PPH02132A

SNAI1, Qiagen RT2, Cat# PPH02459B

ZEB1, Qiagen RT2, Cat# PPH01922A

CDH2, Qiagen RT2, Cat# PPH00636F

Western Blot
Proteins were extracted fromwhole cell lysate using RIPA buffer. Proteins were thenmeasuredwith Pierce BCAProtein Assay Kit (cat

#23225) followingmanufacturer’s instructions. Protein lyses weremixed with 5X laemmli buffer and boiled at 95�C for 5minutes. Pro-

teins were run on the NuPAGE 4-12% Bis-Tris gels (Invitrogen, Cat #NP0323) using Novex sharp pre-stained protein standards as a

marker (Invitrogen, LC8500) and 1XNuPAGEMESSDS buffer as running buffer (Novex, Cat #NP0002) and run at 120 volts. Gels were

transferred in 1X Bolt Transfer buffer (Novex, Cat #BT00061) diluted with water and ethanol. Nitrocellulose membrane paper (Immo-

bilon, Cat#IPVH00010) was used and was activated with 100%methanol (Fisher, Cat#A412-20). Transfer was conducted at 4�C for

1 hour at 100 volts. Membranes were blocked in 5%non-fat milk for 15minutes prior to addition of primary antibody andwashedwith

1X TBST (10X stock from Teknova, T9511).

Antibodies used for western blot are (also listed in Key Resources Table):

(1) CHD1 (D8C2) Rabbit mAb, Cell Signaling, Cat #4351

(2) AR Antibody (N-20), Santa Cruz, sc-816

(3) KLK3 (D6B1) XP� Rabbit mAb, Cell Signaling, Cat # 5365

(4) PMEPA1 Antibody (P-15), Santa Cruz, Cat # sc-85829

(5) STEAP Antibody (B-4), Santa Cruz, Cat # sc-271872

(6) b-Actin (13E5) Rabbit mAb, Cell Signaling, Cat # 4970

(7) Glucocorticoid Receptor (D6H2L) XP� Rabbit mAb, Cell Signaling, Cat #12041

(8) SGK1 (D27C11) Rabbit mAb, Cell Signaling, Cat #12103

(9) c-Myc (D84C12) Rabbit mAb, Cell Signaling, Cat #5605

Immunofluorescence (IF)
LNCaP/AR cells were seeded on round glass coverslips. After 24 hr, cells were washed with PBS and fixed with 4% para-

formaldehyde for 20 min at room temperature, followed by permeabilization with 0.5% Triton X-100 for 5 min. Then cells

were incubated with primary antibodies (Rabbit anti-GR, CST, #12041; mouse anti-NR2F1 R&D, PP-H8132-00), overnight

at 4�C after blocking with 3% BSA/PBS for 30 min at room temperature, followed by incubation with Alexa Fluor-labeled sec-

ondary antibodies (Alexa Fluor� 488 AffiniPure Goat Anti-Mouse IgG (H+L), Jackson Immunoresearch; Alexa Fluor� 594 Af-

finiPure Goat Anti-Rabbit IgG (H+L), Jackson Immunoresearch) for 1hr at room temperature. Nuclei were stained with DAPI.

Images were acquired on Leica DMi8 microscope and Zeiss LSM 700 confocal Laser Scanning Microscope. Three biological

replicated, representative images of each cell line were used to quantify the fluorescence intensity of GR and NR2F1 signals,

using imageJ.

Immunohistochemistry (IHC)
Tumors were fixed in 4%paraformaldehyde overnight at 4�C. Then tumors were embedded in paraffin and sectioned at 5 mm. Immu-

nohistochemistry was performed following standard procedures. After incubated with primary antibodies (Rabbit anti-GR, CST,

#12041; mouse anti-NR2F1 R&D, PP-H8132-00), VECTASTAIN� ABC HRP Kit (Peroxidase, Rabbit IgG) and HRP conjugated

Goat anti-mouse IgGwere used, followed by ImmPACT�DAB Peroxidase (HRP) Substrate. Images were acquired on ECHO revolve

microscope. Representative images of four tumors of each group were used to quantify the IHC signals of GR and NR2F1, using

imageJ and the IHC Profiler plugin (Varghese et al., 2014).

FACS-based Functional Screen Mediated by CRISPR/Cas9
LNCaP/AR-shCHD1 cells (GFP positive) were transduced with lentiCas9-Blast purchased from Addgene (Plasmid #52962) and then

selectedwith 5 mg/ml blasticidin (Gibco #A1113903) for 5 days. Four individual guide RNAswere designed to target each of the top 22

candidate TFs using the online CRISPR designing tool at Benchling (https://benchling.com). The sequences of sgRNAs can be found

in Table S5. These guide RNAs were individually cloned into pLKO5.sgRNA.EFS.tRFP purchased from Addgene (Plasmid #57823).

Then the LNCaP/AR-shCHD1-Cas9-Blast cells were transduced with these guide RNAs (guide RNAs targeting the same TF were

pooled together) or sgNT with a viral infection efficiency of 50-90%, as measured by percentage of RFP positive cells (achieving

a cell mixture of RFP positive cells vs RFP negative cells). The transduced cells were treated with 10 mM enzalutamide and the per-

centage of RFP positive cells were measured by FACS on day 0 and day 7. If deletion of any TF by CRISPR/Cas9 compromised the

resistance to enzalutamide, it will give the infected cells with a growth disadvantage that will in turn be reflected by a reduction in the

percentage of RFP positive cells.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics Methods
All of the statistical details of experiments can be found in figure legends as well as the Method Details section. For all comparisons

between two groups of independent datasets, multiple t tests were performed, p value and standard error of the mean (SEM) were

reported. For all comparisons among more than two groups (>2), one-way or two-way ANOVA were performed, p values and SEM

were reported; and p values were adjusted by multiple testing corrections (Bonferroni) when applicable. For dose response curve,

p values were calculated by non-linear regression with extra sum-of-squares F test. For all figures, **** represents p<0.0001. *** rep-

resents p<0.001. ** represents p<0.01. * represents p<0.05. The usage of all statistical approaches was examined by our biostatis-

tical collaborators. All bioinformatic analysis and comparisons are described in details below.

Analysis of Human Prostate Cancer Dataset
Processed 444 SU2C metastatic prostate cancer patient cohort (Abida et al., 2019) RNA-seq data and enzalutamide/abiraterone

treatment data were downloaded from cBioPortal (http://www.cbioportal.org/). 128 patients of this cohort with metastatic CRPC

have baseline biopsy and matched clinical data. 75 patients of this 128 sub-cohort have gene expression data captured by Poly-A

RNA-seq. 56 patients of this 75 sub-cohort have records of time on either enzalutamide/apalutamide or abiraterone. 4 patients of this

cohort were excluded because they have SPOPmutations, which demonstrate elevated sensitivity to antiandrogen treatment (Boy-

sen et al., 2018). Histogram of CHD1 mRNA distribution was generated by R Studio (Version 1.1.453). The probability of treatment

duration figure was generated by prism 8 using Mantel-Cox test.

The same SU2C cohort (Abida et al., 2019) RNA-seq data was used to analyze expression patterns of 4 TFs (NR3C1, POU3F2,

NR2F1 and TBX2) and their relationship with CHD1 level. Among these patients, RNA-seq data (Capture platform) for all 5 genes

were available for 212 patients. We excluded patients with only polyA RNA-seq data because NR2F1 expression is not available

from the polyA platform. Expression matrix of all 5 genes was analyzed by ‘‘hclust’’ method (M€ullner, 2013), with the parameter

k-means= 5, scale = ‘‘column’’ (normalized value centered by gene). Unsupervised clustering resulted in 5 distinct groups, using

the ‘‘pheatmap’’ package of R (V1.0.12). Each cluster contains different number of tumors (Cluster:1 Size:102, Cluster:2 Size:27,

Cluster3: Size:2, Cluster:4 Size:4, Cluster:5, Size:40).

Sample and library preparation for RNA-seq and ATAC-seq
1x106 LNCaP/AR cells was plated in 6-well plate, growing under regular RPMI-1640 containing 10% FBS. After 48 hours, cells were

trypsinized and collected by spinning at 500 g for 1.5 min, 4� C. Cells were then washed once with cold 1X PBS and spinned down at

500 g for 1.5 min, 4� C. After discarding supernatant, cells were lysed using 50 mL cold lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM

NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-360) and spinned down immediately at 500 g for 10 min, 4 � C. Total RNA from cells was ex-

tracted using Trizol (Ambion, Cat 15596018) following manufacturer’s instructions. RNA-Seq libraries were prepared using the Illu-

mina TruSeq stranded mRNA kit, with 10 cycles of PCR amplification, starting from 500 ng of total RNA, at the Genome Technology

Center (GTC) at NYU. Barcoded RNA-Seq were run as single read 50 nucleotides in length on the Illumina HiSeq 2500 (v4 chemistry)

and Poly-A selection was performed. For ATAC-seq, 5x105 LNCaP/AR cells were precipitated and kept on ice and subsequently re-

suspended in 25 mL 2X TD Buffer (Illumina Nextera kit), 2.5 mL Transposase enzyme (Illumina Nextera kit, 15028252) and 22.5 mL

Nuclease-free water in a total of 50 mL reaction for 1 hr at 37� C. DNA was then purified using Qiagen MinElute PCR purification

kit (28004) in a final volume of 10 mL. ATAC-Seq- Libraries were prepared following the Buenrostro protocol (https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC4374986/) and ATAC-Seq libraries were sequenced as 50 base paired-end reads on the Illumina

HiSeq 4000 at the Genome Technology Center (GTC) at NYU.

Analysis of RNA-seq Data
Reads with Phred quality scores less than 20 and less than 35 bp after trimming were removed from further analysis using trimgalore

(v0.4.1) (Martin, 2011). Quality-filtered reads were then aligned to the human reference genome GRCh38 using the HISAT (v2.0.1)

(Pertea et al., 2016) aligner with default settings andmarked duplicates using Sambamba (v0.6.6) (Tarasov et al., 2015). Aligned reads

were quantified using featureCounts (v1.4.6) (Liao et al., 2014) per gene ID against GENCODE v10 GRCh38.p10 (Mudge and Harrow,

2015). Differential gene expression analysis was performed using the R package DEseq2 (v1.6.3) (Love et al., 2014). Cutoff values of

absolute fold change greater than 2 and FDR<0.1 were used to select for differentially expressed genes between sample group com-

parisons. All RNA-seq data have been deposited in the Sequence Read Archive (SRA) with the accession numbers GSE126917, also

listed in Key Resources Table.

GO Analysis
GeneOntology Enrichment Pathway analysis was performed using PANTHER to determine molecular and biological functional cat-

egories which were enriched in CHD1-depelted cells (Mu et al., 2017). The input gene lists were generated from the overlapping of

differentially expressed genes in four compilations (shCHD1-1 compared to shNT, shCHD1-2 compared to shNT, shCHD1-XE-1

compared to shNT, shCHD1-XE-2 compared to shNT), which consistence of 150 genes in total. Cutoff values of FDR<0.05 was

used to select top enriched pathways. To avoid pathways with too few genes, we excluded the gene lists with less than 10 hits

changed in our datasets.
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GSEA Analysis
GSEA statistical analysis was carried out with publicly available software from the Broad Institute (http://www.broadinstitute.org/

gsea/index.jsp). Weighted GSEA enrichment statistic and Signal2Noise metric for ranking genes were used. The AR selec-

tive gene score was calculated by the sum of RPKM of all genes in the AR selective gene list as previously defined (Arora

et al., 2013).

Analysis of ATAC-seq Data
We utilized trimgalore (v0.4.1) (Martin, 2011) for the raw reads to remove reads shorter than 35 bp or with Phred quality scores

less than 20 and then aligned those trimmed reads to the human reference genome (GRCh38) using default parameters in

BWA (v0.7.12) (Li and Durbin, 2009). The aligned reads were subsequently filtered for quality and uniquely mappable reads

were retained for further analysis using Samtools (v1.3) (Li et al., 2009) and Sambamba (v0.6.6) (Tarasov et al., 2015). Library

complexity was measured using BEDTools (v2.26.0) (Quinlan and Hall, 2010) and meets ENCODE data quality standards

(Landt et al., 2012). Relaxed peaks were called using MACS (v2.1.0) (Feng et al., 2012) with a p value of 1x10-2. Consensus

peaks were calculated by taking the overlap of peaks for sample, its replicates, and pseudoreplicates. All ATAC-seq data

have been deposited in the Sequence Read Archive (SRA) with the accession numbers GSE127241, also listed in Key Re-

sources Table.

Differential Binding Analysis
To detect differentially bound sites, we used R (v3.3.2) and package DiffBind (v2.2.12) (Stark and Brown, 2011; R Core Team, 2016)

Default parameters were used in DiffBind workflow. To identify overlapping peaks between conditions we used BEDtools (v2.26.0),

using intersect (Quinlan and Hall, 2010).

ATAC-seq Differential Peak and RNA-Seq Fold Change CDF Plots
We filtered the above annotated differential peak data for peak locations having fold changes of greater than 2 and greater than 5

separately, with associated p values of 0.01 or less. We then took the gene name from these filtered peak annotations and plotted

the cumulative distribution of the gene’s RNA-seq differential expression log2 fold change values against the cumulative distribution

of the log2 expression fold change of all genes.

Annotation and Differential Motif Detection
To identify motif presence in peaks, we created a list of possible binding sites across the human reference (GRCh38) genome of

motifs obtained from the JASPAR 2018 core vertebrate non-redundant database using the fimo command from the MEME suite

(v4.11.1) (Bailey et al., 2015; Khan et al., 2017). We then performed differential motif analysis using DAStk (v0.1.5) on ATAC-seq

peaks (Tripodi et al., 2018). ATAC-seq peaks were annotated using the annotatePeaks. script in HOMER (v4.9) (Heinz

et al., 2010).

Predicting Driver TFs Using RNA-seq and ATAC-seq Data
Wedeveloped aworkflow (Barnes et al., 2019) that combines RNA-seq and ATAC-seq data with TFmotif information to predict driver

TFs in prostate cancer resistance, similar as the method as previously described (Franco et al., 2018).

Transcription Factor Expression using RNA-seq: For each cell line (2 shCHD1-XE lines and two shCHD1 lines) we calculated the

RNA-Score as the RNA-seq log2 fold change values compared to shNT cells.

Motif Predictions using ATAC-seq: For each cell line (2 shCHD1-XE lines and two shCHD1 lines) we calculated the ATAC-seq from

the DAStk derived motif differential scores.

Determining driver Transcription Factors: To avoid having results from one of the four cell lines dominate the entire analysis, a

weight g was first calculated for each group by dividing the sum of the absolute value shCHD1-XE RNA-seq fold change values

by the sum of the absolute value of shCHD1 RNA-Scores. A g was also calculated for ATAC-Scores by dividing the sum of

shCHD1-XE motif differential scores by the sum of shCHD1 ATAC-Scores, as shown in this equation: g=

P
jshCHD1�XEsjP
jshCHD1sj . RNA fold

change values and motif differential Scores were then multiplied by the respective weights, and then summed to create overall

RNA-Scores and ATAC-Scores, respectively (Table S5). Then a Combined-Score is calculated by multiplying the overall RNA-Score

and ATAC-Score.

If the TF has both negative value of RNA-Score and ATAC-Score, the Combined-Score was multiplied by -1 to get the adjusted

Combined-Score. Furthermore, because some TFs may upregulate the downstream signaling pathway without significant changes

in chromatin accessibility, or upregulate the downstream signaling pathway with only changes in chromatin accessibility, the Com-

bined-Score of TFswith top 12 RNA-Scores and/or top 5 ATAC-Scores was alsomultiplied by -1 if it was a negative value (cut-off was

picked based on the previously known function of these TFs). Then all the TFs are ranked using the adjusted Combined-Score (Fig-

ure 5H). The top 20 TFs with highest adjusted Combined-Score plus the 2 TFs with highest ATAC-Score are selected as final candi-

date resistant drivers for further functional screen.
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Generating Density Heatmaps and Profiles
For heatmaps and profiles, we used deepTools (v2.5.0) (Ramı́rez et al., 2016) to generate read abundance from all datasets around

peak center (± 2.5 kb/ 2.0 kb), using ‘computeMatrix’. These matrices were then used to create heatmaps and profiles, using deep-

Tools commands ‘plotHeatmap’ or ‘plotProfile’ respectively.

DATA AND CODE AVAILABILITY

Library shRNA HiSeq data has been deposited in GEO: GSE127957. RNA-Seq data has been deposited in GEO: GSE126917.

ATAC-Seq data has been deposited in GEO: GSE127241.
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