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Cancer therapies are often limited by acquired drug resistance 
and partial killing of a tumor cell population1,2. To combat 
these limitations, many efforts focus on the development 

of combination drug therapies3–5. Generally, previous studies have 
focused on identifying combinations that produce synergistic 
drug–drug interactions. In contrast to expectations, recent reports 
demonstrate that synergy is not observed in clinically efficacious 
drug combinations, in which the drugs instead are typically additive 
or act independently6. Synergistic combinations tend to reinforce 
the killing that would be induced by one of the drugs within the 
combination, rather than facilitating the killing of new cells that 
would not be killed by either of the drugs alone7,8. Furthermore, 
synergistic combinations favor the evolution of resistant clones9. 
While these data may limit the value of identifying drug synergies, 
understanding the sources of antagonism still remains an important 
issue. It stands to reason that antagonism—particularly very strong 
response antagonism—may limit the efficacy of a drug combina-
tion. Predicting which drug combinations will result in antagonism 
is challenging due to the lack of transparent ‘rules’ underlying this 
phenomenon and the unpredictable and often genotype-specific 
nature of drug–drug interactions10. Thus, an unmet need is the 
identification of robust guiding principles to more efficiently iden-
tify, predict or improve antagonistic drug–drug interactions.

In the absence of principles that enable prediction of non-
additive drug interactions, a common approach is to screen drug 
combinations, prioritizing testing for drugs that target proteins 
with complementary functions. Recent studies have used known 
or predicted network topologies to enrich for non-additive drug 
combinations11–14. Furthermore, network simulations have revealed 
topological features, such as negative feedback and mutual inhibi-
tion, which may underlie the antagonism of drug combinations15. 
We envisioned that the principles of drug–drug antagonism might 
emerge from studying drugs targeting a network enriched for antag-
onistic interactions.

In recent years, it has become clear that at least 12 mechanistically 
distinct forms of cell death exist16. Because these death pathways 
function in a mutually exclusive manner, we reasoned that drug 
combinations designed to co-activate multiple types of cell death 
might be enriched for antagonistic interactions. Several lines of evi-
dence exist to suggest negative interaction and/or interdependent 
and mutually exclusive function among the various forms of cell 
death17,18. For instance, necroptosis requires inhibition of extrinsic 
apoptosis due to cleavage of the pro-necroptotic receptor-interact-
ing protein kinase 1 (RIPK1) by caspase-8 (ref. 19). Similarly, PARP1, 
the initiator of parthanatos, is cleaved by caspase-3, suggesting that 
apoptosis inhibits the ability to activate parthanatos20. From these 
data, a model is beginning to emerge that mutually exclusive acti-
vation of cell death pathways may be enforced through inhibitory 
‘crosstalk’ between death regulatory pathways16.

To identify a robust set of antagonistic interactions, we tested 
all pairwise combinations of the canonical activators for different 
cell death subtypes. We find that drug combinations consisting of 
cell death-targeting drugs are enriched for drug antagonism and, in 
particular, are strongly enriched for an extreme form of antagonism 
that we call single-agent dominance (SAD). In SAD, the two-drug 
combination phenocopies one of the two single drugs. Importantly, 
this occurs even when the dominant drug is the less efficacious of 
the two compounds. Using statistical modeling, we find that a key 
feature driving SAD is a discrepancy in the relative timing of cell 
death onset, with faster-acting drugs suppressing slower-acting 
drugs, leading to strong antagonism. These antagonistic phenotypes 
could be relieved by temporally phasing drug addition to promote 
synchronized co-activation of multiple death pathways. Finally, we 
explore the molecular mechanisms of SAD involving apoptotic and 
parthanatotic agents, finding that mutually exclusive but conflicting 
use of PARP1 drives dominance in these scenarios. Taken together, 
these findings highlight that the interconnected nature of cell death 
causes unexpected behaviors when these pathways are co-activated. 
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Furthermore, death onset time is a feature of antagonistic drug 
responses, with a previously unappreciated role in dictating interac-
tions between cell death processes.

Results
A high-throughput assay for monitoring death kinetics. Drugs 
that induce different forms of death vary substantially in terms of 
their efficacy and activation rate21. To evaluate drug combinations 
consisting of apoptotic and non-apoptotic agents, we first devel-
oped an assay that could be performed in high throughput while 
also retaining accurate analysis of death kinetics. Methods have 
been developed for high-throughput measurement of cell death 
using SYTOX green in a fluorescence plate reader17. Furthermore, 
SYTOX fluorescence is specific to cell death but largely agnos-
tic to the mechanism by which cells die22. We made experimental 
and computational modifications to previous methods to enable 
an accurate inference of the numbers of live, dead and total cells 
(Fig. 1a and Supplementary Fig. 1). Understanding drug-induced 
death kinetics requires quantification of both live and dead cells 

over time, as inferences built from either measurement alone can 
be misleading (Supplementary Fig. 1b)21. To gain these insights, 
we measured the lethal fraction (LF; the percentage of dead cells 
relative to total cells) before drug addition and at the end of the 
assay (Fig. 1a). To determine LF at intermediate times, experi-
mentally measured dead cell numbers were compared to com-
putationally inferred total cell numbers at matching time points 
(Fig. 1a,b). We estimated total cell numbers using an exponential 
model, constrained by the observed population size at the begin-
ning and end of the assay. Although the growth of drug-treated 
cells is not likely to always be exponential and may not even be 
uniform over time, simulations of LF kinetics under varied popu-
lation growth models revealed similar values regardless of which 
growth model was chosen (Fig. 1c–f and Supplementary Fig. 1). 
This procedure enables quantification of drug-induced changes 
in growth rate, death rate and LF over time, including an ana-
lytical estimation of death onset time (Fig. 1b). Furthermore, all 
measurements are computed from a single assay, without the need 
for any specialized equipment.
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Fig. 1 | A high-throughput assay to monitor cell death kinetics. a, Schematic of the SYTOX assay. (i) Dead cells are counted over time using SYTOX 
fluorescence. (ii) After permeabilization, total cell counts can be determined at 0-h and 48-h time points (filled blue circles). Total cell counts at 
intermediate times are inferred by modeling to an exponential fit (red dashed line). b, Modeled total cell counts used to infer LF at all time points. LF is fit to 
a kinetic model to quantify death onset (DO) and rate (DR) following cell permeabilization. Percentage viability at 48 h is used to quantify pharmacological 
parameters. See also Supplementary Figs. 1 and 2. c–f, Death kinetic estimates under varied population growth models. c, Ambiguity of growth over time 
of a drug-treated population. Experimental measurements for total cells were made only at the beginning (y0) and end (y48) of the assay. Any trajectory 
through the gray area is feasible. The red dashed line is the exponential model used in this study. The black dashed line is the growth rate of untreated 
cells. Example data shown are from cells treated with 0.1 μM camptothecin. d, Twenty-four varied growth models evaluated. The red box highlights the 
exponential growth model. Other growth models tested included linear and sigmoidal models and models with non-uniform rates over time. e, LF kinetics 
for camptothecin at various doses, computed using the different estimated growth models shown in d. The thick line is the exponential model. The 
shaded area around the line represents s.d. among the 24 simulated growth models in d. See also Supplementary Dataset 1. f, Range of death onset times 
computed for different doses of camptothecin. Each dot is the DO estimated using a different population growth model from d. N/A, not applicable.
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Kinetic analysis for apoptotic and non-apoptotic agents. To eval-
uate assay sensitivity, we tested cell dilutions over a wide range of 
cell concentrations. SYTOX green fluorescence of U2OS cells was 
linearly correlated with cell number from approximately 50–20,000 
cells per well, allowing accurate quantification of death rates even 
as low as 1% above background (Fig. 2a). To determine the accu-
racy of our assay, and in particular the accuracy of our death rate 
estimates, we compared our approach to STACK, an automated 
microscopy-based approach that enables direct measurement 
of live and dead cells21. Overall, we found a strong correlation 
between our computationally inferred death rates and those com-
puted from direct measurement of live and dead cells (Fig. 2b–e 
and Supplementary Fig. 2).

To determine whether our assay could reliably measure death 
induced by both apoptotic and non-apoptotic mechanisms, we 

quantified responses to a panel of 54 drugs reported to kill cells 
using different forms of regulated cell death16,23–30. Drug responses 
were screened in U2OS cells, a cancer cell line with wild-type (WT) 
p53, which respond well to a diverse array of cell death-inducing 
agents. Because of the limited availability of markers for some 
forms of death, we focused on a simplified classification scheme, 
categorizing drugs as non-lethal, apoptotic or non-apoptotic. Non-
lethal compounds were those whose effects were exclusively due 
to modulation of growth rate without any drug-induced killing 
(Supplementary Fig. 3a,b). To distinguish between apoptotic and 
non-apoptotic drugs, we scored the degree to which the observed 
response was modulated in a BAX and BAK double-knockout 
(DKO) genetic background, relative to WT U2OS cells (Fig. 2f–h 
and Supplementary Fig. 3). BAX and BAK are pro-apoptotic mem-
bers of the BCL-2 family and are pore-forming proteins required 
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Fig. 2 | Accurate analysis of death kinetics for apoptotic and non-apoptotic agents. a, SYTOX plate reader sensitivity. AU, arbitrary units. b–e, 
Computational estimates of death kinetics compared to experimental measurements using STACK21. Data are the mean ± s.d. from biological replicates 
(n = 6). b, Example images from cells treated with topotecan (31.6 μM) or left untreated. Images are representative of four independent experiments, each 
with similar results. c–e, Comparisons between plate reader-based estimates and STACK for LF data and kinetic fits for topotecan as in b (c) and death 
onset time (d) and death rate (e) for drugs with varied mechanisms of action. For d and e, each drug was tested at a saturating LFmax dose (3.16–31.6 μM). 
f–h, Examples of apoptotic (top) and non-apoptotic (bottom) drugs. Drugs were tested in WT or DKO U2OS cells at seven doses over 48 h. See also 
Supplementary Fig. 3–5. f, Percentage viability across doses at 48 h. g, LF kinetics at the highest drug concentration. Data are the mean ± s.d. from 
biological replicates (n = 4). h, Apoptosis quantified by flow cytometry. Cleaved PARP1 and cleaved caspase-3 double positivity was quantified 24 h after 
treatment. Percentages are the mean ± s.d. from biological replicates (n = 3).
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for mitochondrial outer membrane permeabilization31. We defined 
drugs that primarily induce apoptosis as those in which the maxi-
mum LF was decreased by greater than 50% in DKO as compared 
to WT cells (Supplementary Figs. 3–5). Of the 54 drugs profiled, 
34 were apoptotic using this threshold. Eleven drugs primar-
ily induced non-apoptotic death, as drug sensitivity was largely 
unchanged in DKO cells (Fig. 2f–h and Supplementary Fig. 3). To 

validate the use of a 50% threshold, we also used multivariate analy-
ses such as principal-component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE), which integrated the 
kinetic and pharmacological data for each drug and did not require 
thresholds for the degree of difference between WT and DKO cells 
(Supplementary Fig. 3f,g). Both PCA and t-SNE recovered the 
same classifications as our simplified maximum LF (LFmax)-based 
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convention. Drug classifications based on relative DKO versus 
WT sensitivity also agreed with categorization based on caspase-3 
cleavage, a marker of apoptosis (Fig. 2h). Thus, our computational 
inference-based method accurately quantifies drug-induced death 
and death kinetics for a wide variety of drugs, including those with 
apoptotic and non-apoptotic mechanisms.

Co-activation of death pathways causes antagonism. Different 
subtypes of cell death are activated in a mutually exclusive manner 
due to inhibitory interactions between death pathways16. These fea-
tures are common among antagonistic interactions15. We next tested 
whether co-activation of multiple death pathways would enrich for 
drug antagonism. Our strategy was to test all pairwise combinations 
of the 54 cell death-activating drugs that we evaluated as single 
agents. All combinations were tested across seven doses at a fixed 
dose ratio (constant-ratio dosing) and responses were measured at 
nine time points over 48 h (Fig. 3a,b). Drugs were tested on multiple 
days and across wells on a given day, and both technical and bio-
logical replicates were highly correlated, suggesting a high degree of 
reproducibility within our assay (Fig. 3c and Supplementary Fig. 6).

To score drug–drug interactions, we focused on two common ref-
erence models for estimating the expected response in the absence 
of interactions: the Chou–Talalay combination index (CI) and the 
deviation from Bliss Independence (DBI). CI calculates interac-
tions by comparing the observed half-maximal inhibitory concen-
tration (IC50) for a drug combination to that expected assuming 
dose additivity, whereas DBI calculates interactions by comparing 
the observed response to that expected given independent action 
for the two single drugs (Fig. 3d and Supplementary Fig. 7a,b)32–34. 
Both reference models are supported by well-validated quantitative 
principles; however, as CI is focused on dose additivity and DBI is 
calculated relative to response independence, these models tend to 
capture different types of interactions35–37. For both models, thresh-
olds for synergy and antagonism were determined by identifying CI 
or DBI values that produced less than 5% false-positive rates when 
comparing experimental replicates (Supplementary Fig. 7). Drug–
drug interaction scores were highly reproducible on retesting with 
other assays (Fig. 3e,f and Supplementary Fig. 6).

In our combinatorial drug screen, approximately half of all 
combinations resulted in a drug–drug interaction (53.4% by CI; 
46.6% by DBI). Furthermore, regardless of the scoring convention 
used, greater than 30% of all combinations resulted in antagonism 
(Supplementary Table 1). By comparison, other large-scale screens 

consisting of ‘random’ combinations have identified antagonism 
at frequencies of 2–10% (Supplementary Fig. 8)11,38–40. Thus, as 
expected, combinations of cell death-activating drugs are strongly 
enriched for antagonistic drug–drug interactions.

Death-inducing drug pairs yield single-agent dominance. To 
more deeply analyze our data, we focused on a large set of strong 
antagonisms that we uncovered (Supplementary Fig. 8a). We 
noticed that many antagonistic responses were of an unexpected 
form, wherein the two-drug combination phenocopied one of the 
two single agents (Fig. 4a), which we call SAD. The characteristic 
feature of SAD is that an otherwise efficacious drug becomes fully 
suppressed by a second agent. For example, both SGI-1027, a DNA 
methyltransferase 1 (DNMT1) inhibitor that induces non-apoptotic 
death, and topotecan, a topoisomerase I inhibitor that induces 
apoptosis, produced strong killing in U2OS cells when applied as 
single agents (Fig. 4a). The combination of these agents, however, 
resulted in precisely the same response as SGI-1027 alone. One triv-
ial explanation for this phenotype could be that highly potent drugs 
tend to dominate simply because no additional cells remain to be 
killed. To test this idea directly, we examined all dose–dose com-
binations to determine whether low concentrations of a dominant 
drug could suppress high concentrations of a suppressed drug. We 
found that even non-efficacious concentrations of SGI-1027 were 
sufficient to block death induced by high concentrations of topote-
can (Fig. 4b–d).

To identify other drug combinations that feature SAD, we quan-
tified the Euclidean distance in dose-response profiles between 
every drug combination and its two component drugs. We focused 
only on combinations that were antagonistic and required that a 
suppressed drug induce significant levels of death when used alone. 
Overall, we identified 130 SAD combinations, which were 30% of all 
antagonistic interactions (Supplementary Fig. 9).

Death onset time is a key determinant of drug dominance. 
Considering the prominence of the SAD phenotype in our data, we 
sought to deepen our understanding of dominant antagonism by 
identifying features that were enriched within SAD combinations. 
We performed a multivariate analysis on the kinetic and pharma-
cological data generated in our screen. PCA was used to reduce 
dimensionality. Six principal components were identified that cap-
tured over 85% of the variation in drug-induced death kinetics and 
pharmacological measurements (Fig. 5a–c). To determine which 
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dimensions were capturing information related to drug domi-
nance, we scored the statistical enrichment for SAD combinations 
on each PC. SAD combinations were enriched only on PC2, which 
captured 19% of the overall drug response variation (Fig. 5d and 
Supplementary Fig. 10).

Considering the enrichment for SAD combinations on PC2, 
we next identified the drug response features captured uniquely 
on this component. The response loading coefficients revealed 
that features related to cell death onset time (DO and DOstability) 
were the variables most strongly associated with SAD combina-

tions (Fig. 5c,e). DO refers to the estimated death onset time from 
our kinetic measurements, while DOstability refers to the similarity 
of onset times for a given drug across doses. Features that are 
related to potency, such as the area over the curve (AOC), Emax 
(maximum efficiency) and half-maximal effective concentration 
(EC50), were not captured on this component. To determine what 
aspect of death onset time was related to dominance, we exam-
ined death kinetics for the individual drugs that made up SAD 
combinations. We noticed a discrepancy in the activation rates for 
dominant and suppressed drugs. For instance, in combinations 
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of SGI-1027 and topotecan, in which SGI-1027 was dominant, 
SGI-1027 killed cells earlier and at a faster rate than topotecan 
(Fig. 5f). To determine whether differences in activation rates 

were a common feature of SAD combinations, we explored the 
kinetic ratios for all 130 SAD combinations compared to those 
from 10,000 iterations of 130 random drug combinations in our 
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data. This analysis confirmed that dominant drugs activate sig-
nificantly earlier than their suppressed counterparts (Fig. 5g).

To test whether the correlation between onset time asymmetry 
and drug dominance was indicative of a causal relationship, our 
strategy was to temporally stagger the addition of dominant drugs, 
such that their activity occurred concomitantly with that of their 
suppressed counterparts. We tested this concept with the combi-
nation of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and 
camptothecin, which results in robust domination by MNNG (Fig. 
5h). Addition of the suppressed drug later in time relative to the 
dominant drug did not affect overall drug response or the degree of 
MNNG dominance (Fig. 5i); however, antagonism and dominance 
were relieved when MNNG addition was staggered such that the 
suppressed agent was active at the same time as the dominant drug 
(Fig. 5j,k).

To further test the robustness of the association between domi-
nance and onset time asymmetry, we tested the extent to which drug 
dominance for a given combination would be conserved in other 
cell contexts. In our preliminary drug titrations for this study, we 
found several drugs for which rates differed significantly across cell 
lines. For instance, ABT199 induced death faster in MDA-MB-231 
cells, whereas panobinostat induced death much later in A549 cells 
as compared to other cells. Alternatively, SGI-1027 tended to acti-
vate death rapidly across all cell lines tested. To determine whether 
these rate differences altered drug dominance or if SAD combina-
tions would persist even in the absence of onset time asymmetry, we 
retested SAD combinations in other cell lines. Combinations of SGI-
1027 and camptothecin consistently produced dominance in other 
cell lines (Supplementary Fig. 11a–c). Thus, when onset time asym-
metry was observed in other cell lines, drug dominance was con-
served. Alternatively, when death onset times differed in other cell 
contexts, drug dominance also changed. Combinations of ABT737 
and ABT199 ceased to produce dominance in MDA-MB-231 cells, 
where the onset times for these drugs were similar (Supplementary 
Fig. 11d–f). BX795 and panobinostat, which induced death with 
similar onset times in U2OS cells, produced a SAD phenotype in 
A549 cells, a context in which panobinostat killed with similar effi-
cacy but was activated later than in U2OS cells (Supplementary Fig. 
11g–i). Thus, these data suggest that faster-acting drugs suppress 
slower-acting drugs, leading to antagonism and SAD.

Predictive modeling to identify new SAD combinations. To fur-
ther determine the generalizability of our findings, we aimed to 
predict new SAD combinations from drugs that have not yet been 
tested in combination. Although onset time asymmetry was a char-
acteristic of SAD combinations, our data suggest that this feature 
alone would poorly predict dominance. To identify other impor-
tant features for generating drug dominance, we explored our PCA 
map to determine additional characteristics of SAD combinations, 
dominant drugs or the relationships between dominant and sup-
pressed drugs. Our PCA analysis showed that SAD combinations 
were enriched only on PC2; however, when comparing dominant 
and suppressed drugs rather than their combinations, we found 
that dominant drugs were significantly farther away from their 
suppressed counterparts, suggesting that the vector projections of 
single drugs could themselves be used to predict new SAD combi-
nations (Supplementary Fig. 12a–c).

We mined publicly available data for pharmacological and kinetic 
response profiles for single drugs, which could be projected into our 
PCA map. From these single-drug projections, we identified drug 
pairs whose projection was similar to that observed for experimen-
tally identified SAD combinations (Supplementary Fig. 12d). Full 
kinetic data for drugs at varied doses were not available; however, 
data were available for limited doses for a large panel of drugs from 
a recent study that explored cell death kinetics21. We incorporated 
these kinetic data with publicly available pharmacological data for 

drug responses in U2OS cells41, and together these data were used 
to determine probable vector projections for new drugs in PC1 and 
PC2 (Supplementary Fig. 12d).

Using this publicly available data, we tested 77 combinations 
among 15 drugs, including 48 combinations whose relative single-
agent profiles suggested drug dominance. We validated these pre-
dictions using our SYTOX-based death assay (Supplementary Fig. 
12e–g). Our validation screen was strongly enriched for antagonism 
(> 60%), and 77% of the predicted SAD combinations resulted in 
a dominant antagonistic interaction (P = 2.3 × 10−5; Supplementary 
Fig. 12h,i). Thus, even in the absence of information about the drugs 
and their mechanisms of action, an analysis of single-drug death 
kinetic properties was sufficient to identify new SAD combinations.

Interactions between death pathways mediate dominance. Our 
drug combination screen and subsequent computational analyses 
revealed the overall prevalence and a critical mechanism driving 
drug dominance. Next, we sought to gain a molecular understand-
ing of these drug–drug interactions. Non-additivity is a feature 
often related to the underlying network structure of a drug’s tar-
get proteins12. Given the diversity of drugs tested and the limited 
understanding of death regulatory pathways, we studied a SAD 
combination featuring drugs with known regulatory pathway inter-
actions. For example, hyperactivation of PARP1 causes parthanatos, 
a form of non-apoptotic death16,42. Conversely, inhibition of PARP1 
causes apoptosis due to ‘PARP trapping’ and stabilization of DNA 
lesions43. Furthermore, PARP1 is cleaved and inactivated by cas-
pase-3 (ref. 20). These data suggest a negative interaction between 
apoptotic and parthanatotic pathways, possibly due to the conflict-
ing use of PARP1. To test this, we first evaluated the pathway acti-
vation dynamics of parthanatotic and apoptotic drugs at the level 
of PARP1 activation/inhibition. MNNG exposure led to transient 
hyperactivation of PARP1, causing increased protein PARylation 
(Fig. 6a). PARP1 hyperactivation began minutes after drug expo-
sure and returned to baseline in 1 h. When cells were treated with 
apoptotic drugs like camptothecin, PARP1 was not activated but 
rather was cleaved and inactivated by caspase-3 (Fig. 6b) approxi-
mately 8–12 h after camptothecin exposure (Fig. 6c). Thus, follow-
ing exposure to MNNG or camptothecin, perturbations to PARP1 
activity occur in distinct temporal windows and in a mutually exclu-
sive manner. When cells were exposed to both MNNG and campto-
thecin, PARP1 activation followed an MNNG-like dynamic pattern, 
consistent with the observed phenotypic dominance by MNNG 
over camptothecin (Fig. 6a–c).

Having determined that parthanatotic and apoptotic pertur-
bations of PARP1 occur in a mutually exclusive manner, we next 
examined whether PARP1 is mechanistically involved in the 
MNNG–camptothecin SAD phenotype. To do so, we explored the 
fate of cells treated with MNNG and/or camptothecin in the pres-
ence or absence of a PARP1 inhibitor, rucaparib. Although PARP1 
inhibition by rucaparib can induce apoptosis, a sublethal dose was 
sufficient for blocking PARP1 activity (Supplementary Fig. 13). 
Consistent with expectations, PARP1 inhibition blocked MNNG-
mediated death but enhanced camptothecin sensitivity (Fig. 6d,e). 
The dominance of MNNG over camptothecin was lost when PARP1 
was inhibited by rucaparib. Instead, in the presence of rucaparib, 
combinations of MNNG and camptothecin led to synergistic levels 
of cell death (Fig. 6f). Parthanatotic death, by definition, should not 
occur when PARP1 is inhibited16. Thus, we suspected that PARP1 
inhibition changed not only the nature of the drug–drug interac-
tion but also the mechanism of death induced by this combination. 
To test this, we evaluated markers of activation of apoptotic cell 
death. Using flow cytometry to measure caspase-3 activation, we 
found that PARP1 inhibition by rucaparib switched the mechanism 
of killing induced by MNNG–camptothecin combinations from 
parthanatotic to apoptotic cell death (Fig. 6g,h). Thus, these data 
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confirm that PARP1 mediates an interaction between parthanatotic 
and apoptotic death pathways, leading to antagonism and SAD.

Discussion
When defining drug–drug interactions, a common goal is to iden-
tify drug combinations that may be beneficial therapies. For many 
years, an implicit assumption was that drug synergy was concep-
tually interchangeable with clinical benefit; however, recent stud-
ies have challenged that previous thinking6–8. Drug synergy, at least 
when defined relative to a dose-additivity reference, generally sug-
gests that similar results could be obtained at a lower dose. Synergy 
does not guarantee that a combination will kill cells that would not 
have been killed by either agent alone. Similarly, antagonism may 
not be clinically harmful, even for some SAD combinations. For 
instance, a simple explanation for some SAD combinations would 
be that both drugs have the capacity to kill the same population of 
cells. These combinations would score as antagonistic relative to 
a response-independence reference (but additive relative to dose 
additivity). In this study, however, we found that combinations con-
sisting of death-activating drugs tend to induce antagonism when 
compared to both dose-additivity and response-independence 
references (Supplementary Fig. 7). Furthermore, the maximum 
response of many SAD combinations involved killing of fewer cells 
than were killed by at least one of the two component drugs. In these 
cases, it is likely that using these drugs in combination rather than 
individually would negatively affect treatment efficacy.

Importantly, our study reveals some promising avenues for ways 
to generate potent combinations of death-inducing drugs. In the 
case of MNNG and camptothecin, these drugs alone and in combi-
nation can kill to the same fractional limit, leaving ~10% viable cells 
at saturating doses. Interestingly, when these drugs were temporally 
phased to relieve MNNG dominance, the overall killing increased to 
98%, suggesting that correctly timed drug combinations could kill 
cells that would not have been killed by drug A or B alone.

The phenotypes uncovered in this study underscore the com-
plexities of death regulation and the need for a greater mechanistic 
understanding of how different forms of cell death are controlled, 
with regard to both the molecular mechanisms and kinetics of acti-
vation. Regulated cell death provides an attractive target for thera-
peutic intervention, as cell killing is required for curative therapies44. 
Many different mechanisms are likely contributing to the SAD com-
binations identified in this study, including modulation of cell cycle 
progression (in particular, when cell cycle inhibitors are combined 
with drugs that are more toxic to cells in S phase). As we demon-
strated in the case of parthanatos and apoptosis, however, pathway 
crosstalk likely accounts for many non-additive responses observed 
in these drug combinations. This case is particularly important, as 
PARP1 inhibitors are being tested in clinical settings, generally in 
combination with other cytotoxic therapies, and without regard to 
whether these companion therapies induce apoptotic or parthana-
totic death45,46. Thus, for PARP inhibitors, our data suggest that the 
effectiveness of these agents should depend on the mechanisms by 
which companion compounds kill cells and, more importantly, the 
relative rates of activation of these drugs. More generally, consider-
ing the overall degree of antagonism and SAD within combinations 
of cell death-targeting drugs, our data highlight the potential exis-
tence of widespread inhibitory crosstalk between death pathways. 
In most cases, however, we simply lack requisite knowledge of the 
death pathways activated by each drug and the molecular mecha-
nisms by which most forms of cell death are regulated.

A major benefit from our study is the identification of a gen-
eralizable principle that can be used to streamline the evaluation 
of drug combinations, namely that rates of drug-induced cell death 
can be used to predict drug antagonisms6. Because drug–drug inter-
actions are difficult to predict, current strategies rely on screening 
drug combinations. This process is laborious due to the combina-

torial expansion of possible combinations to test, which is further 
complicated by the fact that drug–drug interactions often depend 
on the doses used, the order and environment in which the drugs 
are applied, and the genotype(s) under evaluation5,10,47–49. Our study 
suggests that drugs may not need to be tested in combination to 
avoid SAD combinations if the rates of drug-induced death onset are 
known or can be measured (Supplementary Fig. 14). Furthermore, 
our data suggest that rate asymmetry may be a more reliable predic-
tor of SAD than the identity of the drugs themselves. Using rates, 
we correctly predicted new SAD combinations among drugs that 
had not been previously tested. Also, we found that drug pairs that 
produced SAD phenotypes often differed across cell lines; however, 
these cell-type-specific differences could also be predicted on the 
basis of death onset asymmetry. These data suggest an opportunity 
for a new paradigm in cancer therapy, one that prioritizes conserved 
rules rather than conserved drug identities.

Currently, standard approaches do not typically evaluate drug 
activation kinetics, instead focusing on the relationship between 
efficacy/potency and dose. These ‘dose–response’ relationships have 
been the central focus of drug pharmacology data for over a cen-
tury, and they clearly reveal important insights about a given drug. 
The kinetic features of a drug are generally not predictable from 
single-time-point dose–response data. Our study reveals that these 
‘rate-response’ relationships are observable in kinetic data and that 
they also produce unique insights into the nature of a given drug or 
drug combination. Given the complementarity of pharmacological 
and kinetic data, the evaluation of both types of data should become 
a new standard.
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Methods
Cell lines and reagents. U2OS, A549, MCF10A and MDA-MB-231 cells were 
obtained from the American Type Culture Collection (ATCC) and maintained at 
low passage numbers (generally less than 20 passages from the original vial). U2OS, 
A549 and MDA-MB-231 cells were grown in DMEM supplemented with 10% FBS, 
2 mM glutamine and penicillin-streptomycin. MCF10A cells were grown in DMEM/
F12 medium supplemented with 5% horse serum, 20 ng ml–1 epidermal growth factor 
(EGF), 0.5 mg ml–1 hydrocortisone, 100 ng ml–1 cholera toxin, 10 µg ml–1 insulin and 
penicillin-streptomycin. Drugs were purchased from Selleck Chemicals, APEXBio 
Technology or Sigma-Aldrich. SYTOX green was purchased from Thermo Fisher. 
Anti-poly/mono ADP ribose rabbit monoclonal antibody (83732) was purchased 
from Cell Signaling Technology. Purified rabbit anti-active caspase-3 (559565) and 
Alexa Fluor 647-conjugated mouse anti-cleaved PARP (558710) antibodies were 
purchased from BD Pharmingen. Secondary antibodies were purchased from LICOR 
Biosciences and BD Biosciences. See also Supplementary Table 2.

SYTOX-based measurement of cell death. The total number of dead cells at given 
time points can be determined by measuring SYTOX fluorescence. SYTOX green 
was tested for linearity by plating cells at twofold cell dilutions from 20,000 cells to 
one cell in 5 μM SYTOX. After adhering, cells were lysed with 0.1% Triton in PBS for 
1.5 h. Fluorescence was measured on a Tecan M1000 plate reader with excitation at 
503 nm and emission at 524 nm. Gain was set to capture linearity and for fluorescence 
to be at ~85% saturation of the detector. For drug-induced cell death measurements, 
cells were seeded at 1,500 cells per well of 384-well optical-bottom black-walled plates 
or 2,500 cells per well of 96-well optical-bottom black-walled plates and adhered 
overnight on the day before drug addition (‘day −1’). On day 0, drugs were prepared 
at a 5× final concentration (10× for 96-well experiments) in DMEM containing 
25 μM SYTOX green (50 μM in 96-well experiments). Seven-point half-log dilutions 
were prepared in 96-well plates. Drug dilutions were added using an Integra ViaFlo96 
electronic pipettor (Integra). Fluorescence readings (excitation at 504 nm, emission 
at 523 nm) were taken at 0, 4, 8, 12, 16, 20, 24, 30 and 48 h on a Tecan M1000 plate 
reader. Additionally, an untreated plate was lysed at t = 0 for initial cell counts by 
adding 0.1% Triton in PBS and incubating for 1.5 h at 37 °C with 5% CO2. After the 
48-h reading, all experimental wells were lysed and a final fluorescence reading was 
taken. LF and relative viability were calculated using the fluorescence readings before 
and after Triton permeabilization.

Modeling lethal fraction kinetics. Using the procedure above, an LF measurement 
can be experimentally determined only at 0 and 48 h (Supplementary Fig. 1a). 
To determine LF at intermediate time points, it was necessary to estimate the 
growth of the drug-treated cells from 0 to 48 h, as the number of dead cells can in 
some cases produce false insights (for example, for drugs that induce potent cell 
death very quickly at high doses and more slowly at low doses, lower doses can 
yield more dead cells; Supplementary Fig. 1b). Although the population size at 
the beginning (y0) and end (y48) of the assay is experimentally determined, some 
ambiguity exists regarding the shape/kinetics of population growth in the drug-
treated conditions (that is, the dynamics of population growth as cells respond 
to the drug; Supplementary Fig. 1c). We considered the ‘area of ambiguity’ for 
population growth to be constrained by two assumptions: (1) the population 
size (for example, live and dead cells) is never less than observed in the initial 
measurement (y0) and (2) the population size is never greater than observed in the 
final measurement (y48). Assumptions 1 and 2 are met if dead cells can be measured 
using SYTOX (that is, dead cells do not decay to the point that they are no longer 
SYTOX positive) and live cells can be observed by STYOX following Triton 
permeabilization. These assumptions were met in our data due to the relatively 
short duration of our study (48 h) and the durability of SYTOX fluorescence, 
which we and others find to be stable for at least 72 h21. For simplicity we used an 
exponential population growth model, which assumes a uniform rate of growth 
over time (Supplementary Fig. 1d). In the context of drug treatment, the growth 
rate is generally decreased, and this is observable in the cell data before and after 
permeabilization with Triton cell data, which are constrained by the experimentally 
observed minimum and maximum total cell numbers at the beginning and end of 
the assay. From the growth curve, the total number of cells could be determined for 
each condition at any time between 0 and 48 h. Together with dead cell counts, LF 
was determined for each drug at all time points and doses measured. Kinetic LFs 
were modeled using a lag exponential death equation described previously21:

LF tð Þ ¼ LF0 þ LFp � LF0
� �

´ ð1� e�DR t�DOð ÞÞ

where LF0 is the lethal fraction at time 0, LFp is the death plateau, DO is the onset 
time of death, and DR is the maximum rate of death. The model was constrained by 
0 < DO < 48, LFp < 1 and DR < 2. LF0 was left unconstrained to allow for variation in 
basal levels of cell death. Drugs that did not produce LFmax values two times greater 
than the LFmax value for DMSO-treated samples were fit to a linear model.

Notably, this approach makes an assumption about uniform exponential 
growth for drug-treated cells; however, assay accuracy does not depend on the 
uniform growth rate assumption. We also tested in 24 population growth models, 
including many that were not exponential and many with non-uniform growth 
rates over time, to determine a possible range for LF kinetics (Supplementary Fig. 
1d). In general, death kinetic terms (DO and DR) were invariant regardless of the 

population growth model chosen for non-lethal drugs and death-inducing drugs 
at low and high concentrations. Some variation was observed at intermediate doses 
for death-inducing drugs, and variation was largest for drugs with particularly 
early death onset times, as fluctuations in the growth model alter death rates and 
death plateau values. These data are reported as confidence intervals for death 
kinetic parameters in Supplementary Dataset 1.

U2OS mKate2 and BAX/BAK double-knockout cell line generation. NucLight 
red mKate2 U2OS cells were generated by spinfecting 6.33 × 106 transduction units 
(TU) per mL of NucLight Red virus (Essen Biosciences) with 8 µg ml–1 polybrene 
and 1.5 × 106 cells at 2,000 r.p.m. for 2 h at 37 °C. After spinning, fresh DMEM was 
added and the cells were incubated overnight. On the next day, cells were replated 
onto a 10-cm dish and grown to 80% confluence. mKate2 cells were selected by 
FACS. The BAX/BAK DKO U2OS cell line was generated using the pX330-puro 
plasmid with an hSpCas9 and BAX (GACAGGGGCCCTTTTGCTTC) or BAK 
(AGACCTGAAAAATGGCTTCG) sgRNA insert. U2OS cells were transiently 
transfected using FuGENE HD transfection reagent (Promega). BAX/BAK DKO 
cells were selected with BH3-mimetic Navitoclax (10 μM) for 5 d. Following 
Navitoclax treatment, cells were seeded as single-cell clones and BAX/BAK DKO 
cells were confirmed by sequencing.

Quantitative microscopy and STACK image analysis. mKate2-expressing U2OS 
cells were seeded either at 200,000 cells per well of 6-well plates or at 2,500 cells per 
well of 96-well plates and adhered overnight. On day 0, drugs were added to wells in 
addition to 50 nM SYTOX. Images were captured using an EVOS FL Auto microscope 
with a ×10 objective using GFP (470/510) and Texas Red (585/624) light cubes (Life 
Technologies). Twenty-five images were collected per well for experiments on 6-well 
plates and four images per well were collected for experiments on 96-well plates, with 
two wells per treatment condition. Live-cell and dead-cell counting was performed 
using IncuCyte software. The average number of cells per image was 284 (range, 
108–812). LF was computed as in Forcina et al21.

Classification of drug mechanisms of cell death. Drugs were classified as non-
lethal, apoptotic and non-apoptotic. Non-lethal compounds were those that did 
not induce significant cell killing over background even at the highest doses tested. 
Significant killing was defined in this study based on the LFmax observed at the 
assay endpoint. More specifically, the LF values for DMSO treatment reached ~8% 
at the end of the assay, so drugs were categorized as non-lethal if they induced less 
than 16% death at their maximum concentration at 48 h. In our kinetic evaluation, 
these drugs fit to a linear model rather than a lag exponential death model, 
consistent with the lack of any observable drug-induced increase in the rate of 
cell killing. For the remaining 45 drugs, apoptotic and non-apoptotic classes were 
distinguished using a two-pronged approach, with either quantitative thresholds or 
a multivariate analysis of our pharmacological and kinetic data. Both approaches 
focused on differences in the measured death between WT and BAX/BAK DKO 
cells. For the threshold-based strategy, we characterized apoptotic drugs as those in 
which the LFmax observed in our data in DKO cells was decreased by greater than 
50% relative to WT cells (that is, where the death was mostly apoptotic).

To validate these classifications, and to validate the use of a 50% threshold 
(essentially to avoid the use of any thresholds), we also analyzed the full 
complement of pharmacological and kinetic data for each drug with PCA. PC1 
captured response features related to potency (Emax, LFmax, etc.), whereas PC2 
captured the degree to which responses were changed in DKO versus WT cells 
(that is, DKO/WT ratio; Supplementary Fig. 3f). Drug classifications based on a 
50% difference in DKO versus WT LFmax were consistent with PCA projections and 
also with other data dimensionality reduction methods, such as t-SNE. Of note, 
both PCA- and t-SNE-based analyses identified two different groups within the 
apoptotic class. For 17 drugs, responses were completely lost in DKO cells (that is, 
both kinetic and dose–response curves fit to a linear model). For the remaining 
17 apoptotic drugs, measures of drug response were diminished in DKO cells, 
although not as dramatically (Supplementary Fig. 3e; two groups of apoptotic drugs 
with respect to death onset times in DKO cells). In our analyses, these classes were 
combined into one apoptotic class for simplicity. See also Supplementary Dataset 1.

Drug combination screen. For combinations of cell death-inducing drugs, we 
used a ‘fixed dose ratio’ scheme rather than an ‘all-by-all’ dose matrix (that is, 
isobologram analysis). For most drugs, the highest drug concentration tested was 
31.6 μM; however, to maintain similar levels of potency in the combination drug 
screen, several drugs were tested starting at higher or lower ranges (Supplementary 
Dataset 2 and Supplementary Table 3). For graphing purposes, these drugs are 
plotted on a shared ‘normalized’ dose axis, reporting two dose scales when needed 
(Fig. 2e,f). Drug dilutions were pinned onto 96-well plates manually by the 
following procedure: a source plate contained stock concentrations of 54 drugs 
arrayed in wells 1–54. From the source plate, each single row of ten drugs was 
diluted to five times the highest concentration needed in the screen in DMEM 
using a 12-channel pipette. This array of 54 drugs was considered the ‘B drug’. 
To the array of B drugs, the ‘A drug’ was added manually at five times highest 
concentration needed in the screen using a repeat pipettor. For wells in which the 
A and B drugs were identical (that is, A + A combinations), an equivalent volume 
of DMSO was added in place of the A drug. Thus, no self–self drug pairs were 

Nature Chemical Biology | www.nature.com/naturechemicalbiology

http://www.nature.com/naturechemicalbiology


Articles NATuRe CheMicAl Biology

tested in this screen, both to conserve drug and to create day-to-day replicates 
of each drug to evaluate data robustness. These A + B drug combinations in the 
pin plate were subsequently diluted at half-log dilutions for a total of seven doses. 
Then, 10 µl of each fivefold drug dilution was added to 384-well plates using an 
Integra via-flo 96-well head automatic pipettor.

Calculating drug–drug interactions. Drug–drug interactions were calculated 
using the Chou–Talalay method (CI) and the DBI. The response data used were 
1 − LF (that is, with the LF measurement represented in terms of the viable 
fraction). CI was calculated according to the convention:

CI ¼ DA

dA
þ DB

dB

where da and db are the IC50 doses of drug A (alone) and drug B (alone), and DA and 
DB refer to the doses of drugs A and B in the A + B combination that resulted in 
an IC50 response. A similar calculation was performed using the EC50 of A, B and 
the A + B combination, as well as the GR50 (dose of 50% growth reduction). For 
the GR index, the relative viability (live cells in drug-treated versus vehicle-treated 
conditions) was used rather than 1 – LF based on the established convention for the 
GR index50. In figures where a dose curve is shown for a predicted additive drug 
response, the curve was estimated using three-parameter logistic regression, with the 
EC50 set to the predicted IC50 at CI = 1, Emax set to the minimum observed between 
drugs A and B, and the hill slope set to the mean of hill slopes for drugs A and B.

For DBI, the expected response at each dose was computed according to the BI 
convention:

Bliss expected response ¼ RA þ RB � ðRA ´RBÞ

where RA and RB refer to the LF observed at each dose for drugs A and B. The Bliss 
expected response at each dose was then fit to a logistic regression model. DBI was 
computed as:

DBI ¼ AOCBliss expected responseð Þ
AOCobserved responseð Þ

where the AOC was computed for the observed data and the Bliss expected 
dose–response curve. For each of the methods described above, thresholds 
for non-additive interactions were determined by comparing the error among 
biological replicates. Specifically, CI or DBI scores were computed from each 
replicate separately. Replicate 1 was selected as ‘true’ and the threshold for 
drug-drug interaction was iteratively increased from 1 to 10 (for antagonism) 
or decreased from 1 to 0 (for synergy). This process was repeated using every 
other replicate as true and evaluating ‘hit’ specificity using replicate 1. Threshold 
values for interaction were selected at values where false-positive rates were 
below 5%. Thresholds and numbers of positive/negative interactions are shown in 
Supplementary Table 1 and Supplementary Fig. 7.

Quantitative identification of drug combinations featuring single-agent 
dominance. To identify drug combinations that feature SAD in a quantitative and 
unbiased manner, we quantified the Euclidean distance between the pharmacological 
dose curves for every drug combination and its component drugs. A drug was 
considered dominant if the distance between a drug combination and its closest single 
drug was less than two times the error rate observed in our assay (that is, less than 
~12% variation). This process also selects relatively trivial versions of dominance 
where the suppressed drug was inefficacious. Thus, we also did not allow suppressed 
drugs to result in less than 16% killing (the same threshold used to define non-lethal 
compounds). Using this approach, dominant antagonism was observed for 130 
combinations when CI was used to define antagonism and 159 combinations when 
DBI was used to define antagonism. See also Supplementary Datasets 3 and 4.

CellTiter-Glo-based measurement of relative viability. Cells were seeded at 2,500 
cells per well in 96-well plates and adhered overnight. On the day of drug addition, 
10× drug solutions were prepared as above in DMEM and added to the wells. At 
48 h after treatment, cells were lysed according to the manufacturer’s instructions 
(CellTiter-Glo, Promega) and luminescence was measured using a Tecan Spark I 
plate reader. Relative viability was calculated as the percentage viability relative to 
DMSO control wells on the same plate.

Flow cytometry-based analysis of apoptosis. Cells were seeded at 200,000 cells 
per well in six-well dishes on the day before treatment and adhered overnight. For 
time-course experiments, drugs were added in a manner such that all samples were 
collected at the same time. After treatment, cells were collected and fixed with 4% 
formaldehyde for 15 min. After two washes with PBS, cells were exposed to 100% 
methanol at −20 °C for > 2 h. Cells were washed with PBS and incubated with 
antibody to active caspase-3 (1:500 dilution, BD Biosciences) in a 50/50 (vol/vol) 
PBS-T:Odyssey blocking buffer solution (LICOR). Cells were washed with PBS-T 
and incubated with Alexa Fluor 647-conjugated primary antibody to cleaved 
PARP and Alexa Fluor 488-conjugated goat anti-rabbit secondary antibody (1:500 
dilution; BD Bioscience) overnight at room temperature. FACS samples were run 
on an LSR II machine with excitation lasers of 488 and 640 nm.

Western blot analysis of PARylation. Cells were seeded at 200,000 cells per well in 
six-well dishes and adhered overnight. All drugs were added at t = 0, and cell lysates 
were prepared at indicated time points. Briefly, medium was removed from the well 
and cells were washed twice with 2 ml of PBS. Cells were lysed by adding 400 µl of 
SDS-lysis buffer (50 mM Tris-HCl, 2% SDS, 5% glycerol, 5 mM EDTA, 1 mM NaF, 
10 mM β-glycerophosphate, 1 mM PMSF, 1 mM Na3VO4, protease inhibitor and 
phosphatase inhibitor tablet). Lysates were spin-filtered through 0.2-µm multi-well 
filters to remove DNA (Pall). After filtration, lysate concentration was determined 
by the Pierce BCA protein assay kit according to the manufacturer’s instructions 
(Thermo). Lysate concentrations were normalized to 0.5 mg ml–1 for SDS–PAGE 
loading. Samples were run on precast 48-well gels and transferred using a semidry 
fast transfer (i-BLOT, Invitrogen). Membranes were blocked in a 50/50 (vol/vol) PBS-
T:Odyssey blocking buffer solution for 1 h at room temperature, incubated overnight 
at 4 °C in primary antibody and stained with secondary antibodies conjugated to 
infrared dyes (LICOR). Blots were visualized using a LICOR Odyssey CLx scanner.

Data analysis and statistics. All statistical analyses and curve fitting was 
performed using MATLAB software. PCA was performed after z-scoring data 
using the built-in function ‘pca’. Analysis of flow cytometry data was performed 
using FlowJo, and western blot analysis was done using LICOR Image Studio. 
Pearson correlation coefficients were calculated using the MATLAB function 
‘corrcoef ’. Fisher’s exact tests were performed using the function ‘fishertest’, with 
right tailed specified (for example, enrichment). t-SNE was performed on z-scored 
data using the function ‘tsne’ under default conditions.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Source data for evaluation of the mechanism by which drugs led to cell death are 
included in Supplementary Dataset 1. Source data for the drug combination screen 
in Fig. 2d are included in Supplementary Dataset th2. PCA score data related to Fig. 
4a–c are included in Supplementary Dataset 3. The list of 130 SAD combinations 
identified in this study is included in Supplementary Dataset 4. All other data are 
available upon request.

Code availability
Custom analysis code for computing LF kinetics from endpoint data is included in 
the MATLAB script ‘backfitting and LED.m’. Other analysis code is available upon 
request.
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