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SUMMARY
When evaluating anti-cancer drugs, two different measurements are used: relative viability, which scores an
amalgam of proliferative arrest and cell death, and fractional viability, which specifically scores the degree of
cell killing. We quantify relationships between drug-induced growth inhibition and cell death by counting live
and dead cells using quantitative microscopy. We find that most drugs affect both proliferation and death,
but in different proportions and with different relative timing. This causes a non-uniform relationship between
relative and fractional response measurements. To unify these measurements, we created a data visualiza-
tion and analysis platform called drug GRADE, which characterizes the degree to which death contributes to
an observed drug response. GRADE captures drug- and genotype-specific responses, which are not
captured using traditional pharmacometrics. This study highlights the idiosyncratic nature of drug-induced
proliferative arrest and cell death. Furthermore, we provide a metric for quantitatively evaluating the relation-
ship between these behaviors.
INTRODUCTION

Precise evaluation of the response of a cell to a drug is a critical

step in pre-clinical drug development. Failures in this process

have contributed to issues with irreproducibility of phenotypes

across experimental platforms, spurious associations in preci-

sion medicine, and misannotated mechanisms of drug action

(Bruno et al., 2017; Chopra et al., 2020; Hafner et al., 2019;

Haibe-Kains et al., 2013). Recent studies continue to reveal

that we generally do not know how drugs function, even for

drugs that are well studied and precisely engineered (Lin et al.,

2019). Traditional methods to evaluate a drug response have

relied on pharmacological measures of the dose-response rela-

tionship of a drug, such as the half-maximal effective concentra-

tion (EC50) or the half-maximal inhibitory concentration (IC50).

These features are important, but they reveal a biased and

incomplete insight. Notably, measures of drug potency such as

the EC50 or IC50 are poorly correlated with other important fea-

tures, such as the maximum response to a drug (i.e., drug effi-

cacy) (Fallahi-Sichani et al., 2013). Furthermore, measures of

drug potency provide minimal insight into the mechanisms of

drug action. In recent years, several drug-scoring algorithms

have been developed to improve the evaluation of pharmacolog-

ical dose responses, including approaches that facilitate an inte-

grated evaluation of drug potency and efficacy (Fallahi-Sichani
This is an open access article und
et al., 2013; Meyer et al., 2019). In addition, it has now been

well demonstrated that differences in the proliferation rate be-

tween cell types were a confounding factor in most prior mea-

surements of drug sensitivity (Hafner et al., 2016). Correcting

for these artifactual differences in apparent drug sensitivity gen-

erates a more rational evaluation and has identified drug sensi-

tivity-genotype relationships that are missed using traditional

methods (Hafner et al., 2016; Harris et al., 2016).

One issue that has not been explored in detail is the underlying

data itself. In nearly all cases, drug sensitivity is scored by

comparing the relative number of live cells in the context of

drug treatment to the number of live cells in a vehicle control con-

dition. This metric is variably referred to as ‘‘relative viability,’’

‘‘percent survival,’’ ‘‘percent viability,’’ ‘‘drug sensitivity,’’

‘‘normalized cytotoxicity,’’ and so forth (hereafter referred to as

relative viability [RV]). RV is a convenient measure of drug

response, and can be quantified using most commonly used

population-based assays (e.g., MTT, CellTiter-Glo, Alamar

blue, colony formation). Changes to RV can result from partial

or complete arrest of cell proliferation, increased cell death, or

both of these behaviors (Hafner et al., 2016). Because RV is

determined entirely from live cells, this measure provides no

insight into the number of dead cells, or more important, the rela-

tionship between proliferative arrest and cell death following the

application of a drug. When using RV, it is generally unclear to
Cell Reports 31, 107800, June 23, 2020 ª 2020 The Author(s). 1
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Figure 1. RV and FV Produce Largely Unrelated Insights into Drug Response

(A) Schematic defining common ways to quantify drug responses: fractional viability (FV) and relative viability (RV).

(B) Simulated data of drug response over time for (i) untreated, (ii and iii) partially cytostatic/cytotoxic, and (iv) fully cytotoxic conditions. RV and FV are values on a

scale of 0–1 (RV = 1 means the population is 100% as large as the untreated; FV = 1 means the population is 100% alive).

(C–K) STACK assay to measure RV and FV. U2OS-Nuc::mKate2+ cells treated with drug in the presence of SYTOX Green.

(C) Representative images from cells treated with either DMSO, 3.16 mM camptothecin, or 1 mM palbociclib. Scale bars in images represent 100 mm in length.

(D and E) Quantified live and dead cell counts over time for cells treated with camptothecin (D) or palbociclib (E), as in (C).

(F and G) RV dose-response functions for camptothecin (F) or palbociclib (G).

(H and I) FV dose-response functions for camptothecin (H) or palbociclib (I).

(J and K) RV versus FV at all doses for camptothecin (J) or palbociclib (K).

(legend continued on next page)
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what extent a cell population is undergoing proliferative arrest

versus cell death at a given drug concentration (Figure 1A).

An alternative measure of drug sensitivity exists in which a

drug response is quantified as the fractional proportion of live

and dead cells in the drug-treated population (Figure 1A). This

metric is variably called ‘‘lethal fraction’’ (or its inverse, ‘‘viable

fraction’’), ‘‘percent of cells,’’ or ‘‘percent cell death’’ (hereafter

referred to as fractional viability [FV]). In contrast to RV, FV pro-

vides direct insight into the degree of cell death within a popula-

tion. In addition, FV calculations do not require comparison be-

tween treated and untreated groups, which minimizes issues

associated with plating bias, a common issue in multi-well as-

says (Lachmann et al., 2016). In spite of these benefits, FV is

less commonly used because this measure generally requires

either extra measurements or the use of an experimental

platform that provides single-cell data, such as in flow cytome-

try-based evaluation of apoptosis or quantitative microscopy

(Albeck et al., 2008; Forcina et al., 2017).

Relative and fractional measures of drug response are often

used interchangeably, in spite of the fact that these are clearly

different metrics (Méry et al., 2017; Riss et al., 2019). In this study,

we explored the relationship between these two common mea-

sures of drug sensitivity. We find that RV and FV score unique

and largely unrelated properties of a drug response. RV accu-

rately reports the cell population size, but not the degree of cell

killing. Alternatively, FV exclusively reports drug-induced cell

death, but does not provide any insight into the size of the surviv-

ing population. By directly comparing relative and fractional drug

responses, we find that at any given dose, most drugs induce a

coincident decrease in the cell proliferation rate and an increase

in the cell death rate. Furthermore, when evaluating across a large

panel of drugs, we find a non-uniform relationship between the in-

hibition of cell proliferation and the activation of cell death, span-

ning the entire continuum of possible behaviors. We find that the

relative proportion of drug-induced proliferative inhibition versus

cell death varies by drug, by dose, and by genotype. Furthermore,

these features are not captured by traditional pharmacometrics

such as the EC50 or IC50. We developed a quantitative analysis

platform called drug GRADE (growth rate-adjusted death) that

captures the timing and relative magnitude of proliferative inhibi-

tion versus cell death. Evaluation of drug GRADE improves the

ability to resolve cancer subtype-drug-response relationships.

This study highlights the complex and non-uniform relationship

between cell proliferation and cell death and provides an analyt-

ical framework for understanding these relationships.

RESULTS

RV and FV Produce Largely Unrelated Insights about
Drug Response
In an effort to gain deeper insights into the mechanisms of action

for common anti-cancer drugs, we began by exploring the rela-
(L) RV versus FV at all doses for 85 cell death or growth-targeting drugs. Dots for a

for each drug is connected by a colored line.

(M) RV versus FV for 1,833 bioactive compounds, each tested at 5 mM.

For (D)–(K), data are means ± SDs of 4 replicates. Data in (M) are from Forcina e

See also Figure S1 and Table S1.
tionship between two common measures of drug response: RV

and FV (Figure 1A). A critical difference between these two mea-

sures is that RV is focused entirely on the live cell population

across two conditions (drug treated and untreated), whereas

FV includes both live and dead cells, but only in the drug-treated

condition. In addition, because RV uses an untreated control as a

reference point, this measure generally cannot distinguish be-

tween responses that are due to inhibiting proliferation versus

those that are due to activating cell death (Hafner et al., 2016).

Likewise, while decreased FV must require some degree of cell

death, it is generally unclear whether death occurs in a prolifer-

ating, inhibited, or arrested population. Thus, while RV and FV

should be correlated, if not identical, at extremely strong or

weak response levels, the theoretical relationship between these

numbers is unclear, particularly at intermediate levels of

response (Figure 1B). We reasoned that exploring the relation-

ship between RV and FV in detail could reveal hidden principles

of drug sensitivity that are not captured using traditional mea-

sures. We evaluated drug responses in U2OS cells using the

scalable time-lapse analysis of cell death kinetics (STACK)

assay, a quantitative live-cell microscopy assay that measures

both live and dead cells and has equal sensitivity in quantifying

RV and FV (Forcina et al., 2017). We began by investigating RV

and FV responses to two drugs: camptothecin, a topoisomerase

I inhibitor and potent apoptotic agent, and palbociclib, a CDK4/6

inhibitor that primarily induces proliferative arrest without

inducing any cell death (Hafner et al., 2019). As expected, camp-

tothecin induced high levels of cell death, whereas palbociclib

strongly inhibited the growth of the population without causing

any cell death (Figures 1C–1E, S1A, and S1B).

To characterize the relationship between RV and FV re-

sponses, we profiled each drug using an eight-point half-log

dose titration. From these data, we calculated both RV and

FV metrics at the assay endpoint (Figures 1F–1I). A direct com-

parison of RV and FV for camptothecin revealed a discontin-

uous relationship featuring two clearly distinct dose-dependent

behaviors (Figure 1J). In the first phase (low doses, which ac-

counts for the majority of the RV scale), RV is strongly

decreased in a dose-dependent manner while only modestly

affecting FV. In the second phase (higher doses), FV decreases

sharply while RV is only modestly affected (Figure 1J). These

two phases reflect a decrease in proliferation rate with minimal

cell killing at low doses, followed by an increase in death rate,

which occurs at high doses and only in growth-arrested cells

(Figure S1C). Alternatively, for palbociclib, which does not kill

any cells, only the first of these two phases was observed (Fig-

ures 1K and S1C).

To determine whether biphasic response is a common

behavior of many drugs or drug classes, we tested full dose-

response profiles for a panel of 85 drugs, which target a variety

of different proteins controlling cell proliferation and/or cell death

(Table S1). For these drugs, the correlation between RV and FV
given drug represent themean response at each tested dose. The dose titration

t al. (2017).
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responses varied by drug, but they were generally not well corre-

lated (Figures 1L and S1D). For some compounds, we observed

a biphasic dose response similar to that of camptothecin, char-

acterized by two linear but discontinuous phases, with death

occurring only following full proliferative arrest. For most drugs,

however, these two phases were more mixed, and doses were

found in which the RV and FV values reported intermediate levels

of proliferative inhibition and cell death. To supplement these

data, we also reanalyzed a large publicly available dataset of

1,833 bioactive compounds that were previously tested using

the STACK assay (Forcina et al., 2017). The overall profile of re-

sponses across these diverse compounds also highlights a

spectrum of behaviors, rather than exclusively biphasic re-

sponses (Figure 1M). Thus, these data demonstrate that relative

and fractional measures of drug response are not interchange-

able and highlight the lack of a uniform relationship between

FV and RV across drugs.

Relationships between RV and FV Vary Due to
Idiosyncrasies in the Strength and Relative Timing of
Drug-Induced Proliferative Inhibition versus Drug-
Induced Cell Death
Overall, the IC50 doses computed using RV or FV (hereafter,

RV50 and FV50, respectively) were not well correlated, often

differing by several orders of magnitude (Figures 1F–1I and

2A). The RV50 reports the dose at which the number of live cells

following drug treatment is half as large as the untreated pop-

ulation, whereas the FV50 reports the dose at which a popula-

tion is half alive and half dead (Figures S2A–S2C). Thus, these

two values should be the same only in situations in which death

occurs in the absence of any modulation to the proliferation

rate of surviving cells (i.e., death in a population of cells that

is otherwise proliferating at the normal rate). In theory, this

could be achieved in several ways. For instance, drugs that

induce death with a very fast onset time may kill cells before

any observable changes in population size. The FV50 and

RV50 values were very similar for particularly fast drugs, such

as SGI-1027, a DNA methyltransferase 1 (DNMT1) inhibitor,

and ABT-737, a BH3 mimetic (Figures 2B and 2C). To deter-

mine whether this was a general trend, we calculated the cor-

relation between death onset time and the FV50/RV50 ratio. We

found a weak trend in which the FV50 and RV50 were more

similar for drugs that had earlier onset times, but the overall

correlation was modest, suggesting that death onset time alone

was not a particularly good predictor of the FV/RV relationship

(r2 = 0.3957; Figure 2C).

In theory, other mechanisms exist, in addition to death onset

time, that likely contribute to variations between FV and RV met-

rics. For instance, regardless of death onset time, FV and RV

values would differ if a drug potently inhibited cell proliferation

at low, non-killing doses, as we observed for drugs that induce

biphasic responses such as camptothecin (Figure 1J). Likewise,

even for drugs with very late death onset times, FV andRV values

should still be similar if the onset time of proliferative inhibition

was equally late. To identify such scenarios, we focused on

drugs for which the death onset time was a poor predictor of

the relationship between FV and RV, such as abemaciclib and

entinostat.
4 Cell Reports 31, 107800, June 23, 2020
FV50 and RV50 values for the CDK4/6 inhibitor abemaciclib

were unusually varied, even for a drug with slow death onset

time (Figures 2B and 2C). Consistent with our expectations,

abemaciclib produced a distinctly biphasic dose response,

characterized by strong growth inhibition at low non-lethal

doses, and death only at high doses. (Figures 2D–2F). Further-

more, our comparisons of RV and FV values over time, rather

than across doses, revealed that abemaciclib induces death

only following a prolonged period of proliferative arrest (Figures

S2D and S2E).

Alternatively, the histone deacetylase (HDAC) inhibitor enti-

nostat induced death with a delayed onset time of �30 h after

drug exposure, but nonetheless, FV and RV values were well

correlated (Figures 2B and 2C). For this drug, kinetic analysis

revealed that entinostat-treated cells proliferate at precisely

the untreated rate for �30 h, such that the onset time of growth

inhibition is equally delayed and similar to the onset time of cell

death (Figures 2G–2I). Thus, these data highlight the lack of a

singular ‘‘rule’’ describing the relationship between FV and RV

values. The relationship between FV and RV depends on a

combination of features, including the death onset time and

whether cell death is occurring in a proliferating or an arrested

population. These data also underscore the fact that common

pharmacometrics derived from FV or RV fail to capture the rela-

tionship between drug-induced changes in proliferation versus

cell death.

Integrative Analysis of Relative and Fractional Drug
Responses Reveals a Continuum of Distinct
Relationships between Growth Inhibition and Cell Death
RV measures different aspects of a drug response than FV.

Because a simple rule could not be identified for predicting

one from the other, we next asked what may be learned by

quantitatively exploring the relationship between these met-

rics. We began by simulating RV and FV values for theoretical

drug responses, using all possible combinations of fractional

growth inhibition and fractional cell death in different propor-

tions (Figures 3A and 3B). These simulations revealed an

area of possible responses, with boundaries representing

three distinct response scenarios: proliferative inhibition or ar-

rest without any cell death (green line, top, Figure 3C), cell

death within a population of normally proliferating cells (red

line, right, Figure 3C), and a discontinuous biphasic response

characterized by proliferative arrest at low doses, followed by

cell death only within growth-arrested cells (blue line, top and

left, Figure 3C).

The size and shape of this region varies dramatically, depend-

ing on the length of the assay and the proliferation rate assumed

in the simulation. Thus, to stabilize these relationships, we also

simulated drug responses using the normalized growth rate

(GR) inhibition value. GR values are similar to RV in that both

are derived from measurements of live cells in drug-treated

and untreated conditions. A critical difference, however, is that

the GR value scores a drug response based on a comparison

of population GRs in the presence and absence of the drug,

rather than scoring changes in population size as in RV (Hafner

et al., 2016). Thus, GR corrects for artifactual differences in

drug sensitivity that may be caused by differences in assay
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Figure 2. RV and FV Differ Due to Idiosyncrasies in the Strength and Relative Timing of Drug-Induced Proliferative Inhibition versus Cell

Death

(A) Correlation between IC50 computed using RV (RV50) or FV (FV50). Pearson correlation coefficient shown.

(B) Death kinetics computed for 85 cell death and growth-inhibiting drugs. SGI-1027 (red), abemaciclib (purple), ABT-737 (blue), and entinostat (green) are

highlighted.

(C) Correlation between death onset time (DO) and the FV50/RV50 ratio. Pearson correlation coefficient shown.

(D and E) Cell numbers over time for 10 mM abemaciclib. (D) Live cells. (E) Dead cells.

(F) Relationship between FV and RV for a dose range of abemaciclib (0–10 mM) at 72 h.

(G and H) Cell numbers over time for 3.16 mM entinostat. (G) Live cells. (H) Dead cells.

(I) Relationship between FV and RV for a dose range of entinostat (0–31.6 mM) at 72 h.

For (D)–(I), data are means ± SDs from 3 biological replicates.

See also Figure S2.
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length between experiments or differences in proliferation rate

between cell types. A comparison of simulated FV andGR values

revealed a region of possible relationships defined by the same

boundaries seen for FV versus RV comparisons (Figure 3D).

For both FV versus GR and FV versus RV comparisons, the

area between the observed limits represents drug responses

that feature both some growth inhibition and some cell death

at varied proportions. From the simulated data, any data point

within this bounded space can be attributed to a specific degree

of fractional growth inhibition and cell death (region ‘‘b,’’ Figures
3C and 3D; Table S2). The regions outside the bounded area

represent responses that, while conceptually possible, are not

observed in our simulated responses. Region ‘‘a’’ to the left of

the bounded area would include drug responses in which the

population size is decreased in excess of the measured number

of dead cells (Figures 3C and 3D). This may be observed for

some types of cell death, such as entosis (Overholtzer et al.,

2007), and for technical reasons related to assay precision

and/or the relative sensitivity of live cell and dead cell measure-

ments. Region ‘‘c,’’ to the right of the bounded area, includes
Cell Reports 31, 107800, June 23, 2020 5
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Figure 3. Integrative Analysis of Relative and Fractional Drug Responses Reveals a Continuum of Distinct Relationships between Drug-

Induced Growth Arrest and Cell Death

(A–D) Simulations of all possible variations in drug-induced proliferation and cell death.

(A) Equations for live cells in control untreated condition (Cctrl), live cells in drug-treated condition (Clive), dead cells in drug-treated condition (Cdead), FV, RV, and

growth rate (GR) inhibition values. C0, initial cell number; DR, average death rate of drug-treated cells t, assay duration; tc, GR of control (untreated cells); and td,

GR of drug-treated cells. For this simulation, the death rate of control cells is presumed to be zero.

(B) Color map of parameter values. Red increases as death rate increases. Blue increases as GR decreases. The scale for death rate and GR are relative to the

untreated GR.

(C) FV and RV calculated for full parameter space in (B).

(D) FV and GR calculated for full parameter space in (B).

(E–G) Examples of drug responses visualized through the integrated analysis of GR-FV. For each, the GR-FV plot is flanked by the FV dose-response profile (left)

and the GR dose-response profile (bottom).

(E) GR-FV plot for everolimus, a drug that induces GR inhibition without cell death.

(F) GR-FV plot for belinostat, a drug that induces coincident GR inhibition with cell death.

(G) GR-FV plot for an example biphasic drug, doxorubicin.

Data in (E)–(G) are means ± SDs of 3 biological replicates.

See also Figure S3 and Table S2.
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responses in which the degree of cell death is compensated for

by a drug-induced increase in the proliferation rate (Figures 3C

and 3D).

Although responses in regions ‘‘a’’ and ‘‘c’’ are possible in

theory, these are never observed in our experimental data.

For all 85 drugs profiled, the response data fell entirely within

the bounds represented by region ‘‘b’’ (Table S2). Some drugs

inhibited proliferation but were non-lethal at all tested doses

(Figure 3E). Most drug responses, however, were characterized

by GR and FV values that reveal partial growth suppression that

occurs coincidentally with partial cell death, at different propor-

tions for each drug (Figure 3F; Table S2). The responses of

several drugs fell precisely at the top- and left-most boundaries,
6 Cell Reports 31, 107800, June 23, 2020
represented by biphasic dose-response profiles, including abe-

maciclib and most DNA-damaging chemotherapeutics (Fig-

ure 3G; Table S2).

These abrupt non-linear transitions likely capture critical

changes in the drug mechanism of action that occur in a dose-

dependent manner. For instance, it has been recently reported

that abemaciclib-induced cell death occurs due to its off-target

activity against CDK2, which is inhibited by abemaciclib exclu-

sively at high doses (Hafner et al., 2019). Likewise, for DNA-

damaging drugs, low levels of DNA damage are sufficient to

induce cell-cycle arrest, but apoptotic cell death is only activated

following higher levels of DNA damage (Figure S3). These dose-

dependent transition points between proliferative inhibition and
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cell death are clearly visible using a combined analysis of GR and

FV (Figure 3G). This is notable, considering that these transition

points are not generally observable in traditional analyses of

dose-response data.

Drug GRADE Captures Distinct Drug Class-Specific
Relationships between Drug-Induced Proliferative
Arrest and Cell Death
By comparing the experimentally observed drug responses to

our theoretical simulations, we calculated average proliferation

rates and cell death rates for each drug, at each tested dose (Fig-

ures S4A–S4E; Table S2). These data further highlight that the

degree to which a drug inhibits proliferation or activates cell

death depends on the drug, but also strongly depends on the

dose(s) of the drug tested (Figures S4D and S4E). Thus, we

sought to create a summary metric, akin to the IC50/EC50, that

captures the dose-dependent relationship between drug-

induced cell death and proliferative arrest. As with the IC50 or

EC50, such a metric could be used to compare how responses

differ by drug, by cancer subtype, or across different genotypes

within a subtype.

Using the observed relationship between GR and FV values,

we developed a metric that we call the drug GRADE (Figure 4A).

The drug GRADE reports the proportion of an observed drug

response that is due to cell death. We calculated the drug

GRADE using the angle formed between a linear fit of the

observed GR and FV data and a non-lethal drug response (Fig-

ures 4A and S4A, q). This angle was calculated using a range

of doses for which GR >0, as the relationship between FV and

GR was approximately linear within this range. These data

were further rescaled relative to the maximum angle possible

within our simulated data, such that drug GRADE scales from

0 to 100, with 100 reporting that the observed response was

entirely due to cell death and a GRADE of 0 reporting that the

observed response was entirely due to inhibiting proliferation.

Analysis of our kinetic data reveal that drugGRADE is reasonably

stable for most drugs if measurements are taken between 48 and

72 h after drug addition (Figures S4F and S4G).

To explore the robustness of drug GRADE, we first evaluated

whether targeted perturbations to cell death mechanisms would

alter drug GRADE in a predictable manner. For instance, the in-

hibition of apoptosis using genetic knockout of BAX and BAK

should inhibit cell death without compromising the drug-induced

inhibition of cell proliferation. Furthermore, these changes

should be specific to drugs that predominantly function by acti-

vating apoptotic cell death. To explore these predictions, we

calculated drug GRADE for drugs that we recently characterized

as inducing apoptotic death, non-apoptotic death, or non-lethal

anti-proliferative responses (Richards et al., 2020). Consistent

with expectations, ABT737, a BH3 mimetic and potent activator

of apoptosis, had a very high drug GRADE, which was strongly

diminished in the BAX-BAK double-knockout background (Fig-

ure S4H). In wild-type versus BAX-BAK double-knockout cells,

drugGRADEwas not significantly changed for JQ1, a Brd4 inhib-

itor that induces non-apoptotic death in U2OS cells; nor was

drug GRADE altered for chlorambucil, a nitrogen mustard and

DNA-alkylating agent that inhibited proliferation without acti-

vating cell death (Figures 4I and 4J). Thus, drug GRADE accu-
rately captures the degree to which cell death contributes to

an observed drug response.

Inspecting drug GRADE for the 85 drugs that we profiled re-

vealed a continuous distribution of values, further demonstrating

the unique drug-specific relationship between population growth

inhibition and cell death (Figure 4B). Nonetheless, similarities

were observed between drugs within a given class. For instance,

DNA-damaging chemotherapeutics were enriched for very small

drug GRADEs, indicating that for these drugs, the population

reduction at IC50 doses is generally due to growth inhibition,

rather than cell death (Figure 4C). Alternatively, microtubule

toxins tended to have large drug GRADEs, indicating potent

killing at IC50 doses (Figure 4C). Drug GRADE was not correlated

with traditional pharmacometrics, such as the IC50, EC50, or Emax

(Table S1). Thus, while traditional pharmacometrics report in-

sights into drug affinity, potency, or efficacy, drug GRADE pro-

vides a unique insight into the mechanism of population

reduction.

Drug GRADE Captures Subtype-Dependent Differences
in Drug Sensitivity That Are Not Captured Using
Traditional Pharmacometrics
Drug potency and drug efficacy are known to vary in a genotype-

and cancer subtype-dependent manner. It was unclear whether

drug GRADEs are stable features of a given drug or whether

these would also vary for a given drug across cancer subtypes.

To explore this question, we analyzed a publicly available data-

set collected by the Library of Integrated Network-Based

Cellular Signatures (LINCS) consortium, which contained 34

drugs tested across 35 breast cancer cell lines, with the data

collected in a manner that would allow both GR and FV calcula-

tions (Hafner et al., 2019). For essentially all drugs, we found

striking differences in drug GRADE across the cell lines (Fig-

ure S5). For instance, doxorubicin, a topoisomerase II inhibitor

that is commonly used in the treatment of breast cancer, pro-

duced a biphasic dose response in U2OS cells, characterized

by cell death only at high doses and only following full growth ar-

rest (GRADE = 3.8; Figure 3G). In the LINCS breast cancer cell

lines, however, doxorubicin GRADEs ranged from 1 to 73,

revealing substantial variation in the degree of cell killing at

IC50 doses (Figure 5A). Variation in drug GRADE was observed

for all drugs, including targeted agents such as Torin 2 (Figures

4B, S5A, and S5B). Cell-cycle- and growth factor-targeted ther-

apies were skewed toward smaller GRADEs, which is consistent

with the notion that these drugs primarily induce growth inhibi-

tion, rather than cell death (Figure 5C). Cytotoxic chemother-

apies, which can induce both growth inhibition and cell death,

had a nearly random distribution of drug GRADEs across the

cell lines studied (Figure 5C).

For cytotoxic chemotherapies, the observed variance in drug

GRADE across cell lines may suggest that GRADE can capture

genotype- or subtype-specific differences in drug response.

An alternative explanation could be that the relationship between

drug-induced growth arrest and drug-induced cell death is not

determined by the drug, but instead is either stochastic or sub-

ject to strong environmental and/or context-dependent regula-

tion. To distinguish between these possibilities, we investigated,

for each cell line, the variation within GRADEs for drugs that
Cell Reports 31, 107800, June 23, 2020 7
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Figure 4. Drug GRADE Captures Distinct Drug Class-Specific Relationships between Drug-Induced Proliferative Arrest and Cell Death

(A) Step-by-step calculation of drug GRADE. See Experimental Model and Subject Details for a detailed description.

(B) Waterfall plot of GRADEs for 85 drugs tested.

(C) Cumulative distribution functions of drug GRADE for all 85 drugs (blue) or drugs in the listed class (orange). p values calculated using a 2-tailed Kolmogorov-

Smirnov (KS) test.

See also Figure S4 and Table S1.
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share a common mechanism of action. The LINCS dataset in-

cludes 6 different drugs that act by causing DNA damage, and

10 drugs annotated as phosphatidylinositol 3-kinase/mamma-

lian target of rapamycin (PI3K/mTOR) inhibitors (Table S1). For

any one of these drugs, significant variation was observed in

drug GRADE across the LINCS cell lines (Figures 5A, 5B, and

S5B). In contrast, within any given cell line, drugs of a shared

class produced strikingly similar drug GRADEs (Figures 5D and

S5B). Similar drug GRADEs were observed even for the DNA-

damaging drug class, which included drugs that induce DNA

damage using a variety of different molecular mechanisms,

and through unrelated drug-binding targets. These data suggest

that the variation observed for drug GRADE is related to the spe-

cific ways in which a given cell or cell type responds to a class of

drugs.

The variations that are uncovered by drug GRADE reveal

important differences in the underlying drug response. For

instance, DNA-damaging agents resulted in biphasic dose

responses and low drug GRADEs in T47D, a luminal estrogen
8 Cell Reports 31, 107800, June 23, 2020
receptor-positive (ER+) breast cancer cell line (GRADE = 5.5; Fig-

ure 5D). In contrast, these drugs consistently resulted in coinci-

dent proliferative inhibition and cell death with high drug

GRADEs in MDA-MB-468, a basal triple-negative breast cancer

(TNBC) cell line (GRADE = 54.9; Figure 5D). This distinction re-

veals that the traditional IC50 (IC50 calculated fromRV, RV50) cap-

tures a partially growth-suppressing dose in T47D, but the same

pharmacological value captures a potent killing dose in MDA-

MB-468 (Figures 5E and 5F). Furthermore, while the IC50 values

are similar and not statistically distinguishable for most DNA-

damaging drugs in these two cell lines, they are generally lower

in T47Dwhen compared toMDA-MB-468, and generally lower in

luminal cells when compared to TNBCs (Figures 5G and 5H).

Thus, from the IC50 data alone, onemay predict either equal che-

mosensitivity among breast cancer subclasses or that luminal

breast cancer cells aremore chemosensitive than TNBCs. These

conclusions would be inconsistent with established clinical data,

as TNBCs are well validated to be more chemosensitive than

other breast cancer subtypes (Carey et al., 2007). While the
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Figure 5. Drug GRADE Captures Subtype-Dependent Differences in Drug Sensitivity That Are Not Captured Using Traditional Pharmaco-

metrics

(A and B) GR-FV plots for doxorubicin (A) or Torin 2 (B) for 35 cell lines from the LINCS dataset. U2OS data are shown in black for comparison. The range of

GRADEs (q) across all cell lines shown. GR and FV dose-response curves are for the mean responses across all cell lines.

(C) Cumulative distribution function of GRADEs for cytotoxic chemotherapies or growth factor-targeted therapies. The p value from the KS test is shown for

deviation from random scores.

(D) GR-FV plots for 6 DNA-damaging drugs across 15 breast cancer cell lines from LINCS.

(E and F) RV and FV dose responses shown for doxorubicin in T47D (E) or MDA-MB-468 (F). Traditional IC50 (i.e., RV50) highlighted with gray bar.

(legend continued on next page)
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IC50 fails to capture subtype-specific differences in chemosensi-

tivity, drug GRADE identifies significant differences between

breast cancer subtypes. DNA-damaging drugs in TNBCs have

significantly higher drug GRADEs than in other breast cancer

subtypes, revealing that DNA-damaging chemotherapies induce

greater levels of cell death in TNBCs than in other breast cancer

subtypes (Figures 5I and 5J). These data highlight that drug

GRADE captures critical differences in drug response that are

not captured by traditional pharmacometrics.

DISCUSSION

Recent studies have revealed that differences in the population

GR are a confounding factor in themeasurement of the effective-

ness of anti-cancer therapies (Hafner et al., 2016; Harris et al.,

2016). These studies were a major step forward in analysis

methods and have provided much needed clarity about mecha-

nisms driving drug-induced changes in population size. The

strategy we use here builds upon these prior works, and in

fact, uses the GR value as one of the two key analysis features.

A clear distinction, however, is that our approach integrates an

independent measurement of dead cells and drug-induced FV.

We find that the integrated analysis of population growth

(through GR) and fractional killing (through FV) reveals drug-

and cancer subtype-specific features of a drug response that

are not captured using either of these values alone or when using

any traditional pharmacometrics.

The most common measures of drug response are derived

exclusively from measurements of live cells. Using these mea-

surements to infer the degree of death requires some assump-

tion to be made about the relationship between drug-induced

proliferative inhibition and cell death. For instance, a common

assumption is that cell death occurs only in growth-arrested

cells. A central finding from our study is that the relationship be-

tween drug-induced proliferative inhibition and cell death varies

substantially across drugs, and in a continuous manner. Also, for

a given drug or drug class, drug GRADE varied substantially

across cancer subtypes. Thus, in the absence of direct measure-

ments of both FV- and RV-type responses, any assumption

made regarding the relationship between the inhibition of prolif-

eration and cell death is certain to be wrong in most situations.

Of note, the sign of the GR scale is generally interpreted as

revealing the response phenotype, with positive GR values inter-

preted as partial inhibition of proliferation, whereas negative

values are interpreted as cell death (more formally interpreted

as a negative proliferation rate). Although it must be true that

negative GR values report drug-induced cell death, notably, pos-

itive GR values do not necessarily report the lack of cell death.

This was clearly demonstrated in theory in the original descrip-

tion of the GR value (Hafner et al., 2016), and our analysis reveals

that for most drugs, significant levels of death are observed in the

positive portion of the GR scale. These phenotypes generally re-
(G and H) Traditional IC50s for doxorubicin (G) or all DNA-damaging drugs (H) acr

HER2 overexpressing (HER2), or triple-negative (TNBC).

(I and J) Drug GRADE for doxorubicin (I) or all DNA-damaging drugs (J) across 3

For (G)–(J), t test p values are shown for a comparison of TNBC to LUM. All othe

See also Figure S5.
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sulted from intermediate levels of cell death occurring within a

population of cells that continue to proliferate. Thus, while the

GR value unambiguously reports the net population GR in a

manner that distinguishes between an increasing and a

decreasing population size, whether a drug induces significant

killing requires additional measurements. The strategy we

describe in this study clarifies this issue, and our data show

that GR and FV values provide complementary insights into the

nature of a drug response.

Using the complementary insights generated by GR and FV

measures, we found that TNBCs respond to low doses of

DNA-damaging chemotherapies by activating cell death,

whereas luminal breast cancers respond by halting cell prolif-

eration. TNBCs are known to have higher levels of chemosen-

sitivity than other breast cancer subtypes. In some cases,

these differences are related to deficiencies in DNA repair,

but in most cases, it remains unclear which factors account

for the varied levels of sensitivity to DNA-damaging chemo-

therapies (Heijink et al., 2019). Drug GRADE analysis may be

a valuable tool in identifying molecular or genomic features

that contribute to chemosensitivity, particularly since differ-

ences in chemosensitivity between TNBC and other breast

cancer subtypes were not observed in traditional measure-

ments of drug response.

One limitation of the analysis method we propose is that it

cannot be used in conjunction with many common drug-

response assays that exclusively measure live cells (e.g., Cell-

Titer-Glo, MTT, Alamar Blue, colony formation). Our approach

should be amenable to any assay that develops single-cell

data for live and dead cells, such as flow cytometry, histology,

or the microscopy-based STACK analysis used in this study. In

addition, we recently developed a high-throughput fluorescent

plate reader-based strategy for inferring live cell counts using

only a direct measurement of dead cells (Richards et al., 2020).

When combined with the drug GRADE analysis from this study,

these high-throughput methods, which also rely on SYTOX fluo-

rescence, are particularly useful for comparing across various

types of apoptotic and/or non-apoptotic death. SYTOX fluores-

cence is specific to cell death but largely agnostic to the mech-

anism by which cells die. Thus, if only live or dead cells can be

counted, our data suggest that the measurement of dead cells

would be preferable, as live cells can be accurately inferred using

modest experimental and computational adjustments (Richards

et al., 2020).

Drug-response assays are common to many sectors of

biomedical research, and a common practice is to summarize

drug responses using measures such as the IC50, EC50, or

Emax. These metrics are used to compare across drugs or to

compare drug responses across biological scenarios. In many

situations, such as oncology, a critical question generally re-

mains unanswered by these metrics: does the drug actively kill

cells or just inhibit cell proliferation? This is an important
oss 36 cell lines. Data are separated by breast cancer subtype: luminal (LUM),

6 cell lines. Data are separated as in (G) and (H).

r comparisons are not significant. ***p < 0.05; n.s. = not significant.
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distinction. Inhibiting proliferation is not likely to result in a dura-

ble response in the absence of other interventions, such as sur-

gery or additional therapies, particularly when considering the

rapid clearance of most chemotherapeutics due to drug meta-

bolism and excretion. In current approaches, a common strategy

to determine if an observed response is due to cell death or

growth inhibition is to use RV to characterize drug potency

and/or efficacy. These measures are then complemented with

a more specific measure of cell death to determine whether

the observed response was caused by growth arrest or cell

death. Our study reveals a flaw in this line of thinking, that the

response was necessarily ‘‘either/or’’ and not ‘‘both.’’ We find

that most drugs achieve their effects through some combination

of population growth inhibition and cell death, but the relative

proportions of these effects vary by drug, by dose, and across

different cancer subtypes. Clarifying these relationships should

improve our ability to accurately evaluate drug responses and

how these responses vary across drugs or across biological

contexts.
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Goat anti-Rabbit IgG(H+L) Cross-Absorbed Secondary

Antibody, Alexa Fluor 488

ThermoFisher Scientific A-11008; RRID: AB_143165

Chemicals, Peptides, and Recombinant Proteins
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Bromodomain Inhibitor, (+)-JQ1 ApexBio Technology Cat#A1910

BX795 ApexBio Technology Cat#A8222

Cediranib (AZD217) ApexBio Technology Cat#A1882

Chlorambucil ApexBio Technology Cat#B3716

Dacarbazine ApexBio Technology Cat#A2197

Docetaxel ApexBio Technology Cat#A4394

Entinostat (MS-275,SNDX-275) ApexBio Technology Cat#A8171

Everolimus (RAD001) ApexBio Technology Cat#A8169

Flubendazole ApexBio Technology Cat#B1759

Flumequine ApexBio Technology Cat#B2292

Foretinib ApexBio Technology Cat#A2974

GSK J1 ApexBio Technology Cat#A4191

Honokiol ApexBio Technology Cat#N1672

JNJ-26854165 (Serdemetan) ApexBio Technology Cat#A4204

MG-132 ApexBio Technology Cat#A2585

MK1775 ApexBio Technology Cat#A5755

Niclosamide ApexBio Technology Cat#B2283

Nigericin sodium salt ApexBio Technology Cat#B7644

Nilotinib ApexBio Technology Cat#A8232

Oubain ApexBio Technology Cat#B2270

Paclitaxel (Taxol) ApexBio Technology Cat#A4393

Panobinostat (LBH589) ApexBio Technology Cat#A8178

Pazopanib Hydrochloride ApexBio Technology Cat#A8347

PD 0332991 (Palbociclib) HCl ApexBio Technology Cat#A8316

RITA (NSC 652287) ApexBio Technology Cat#A4202

RSL3 ApexBio Technology Cat#B6095

Sabutoclax ApexBio Technology Cat#A4199

Salinomycin ApexBio Technology Cat#A3785

SB743921 HCl ApexBio Technology Cat#B1590

(Continued on next page)
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SGI-1027 ApexBio Technology Cat#B1622

TAE684 (NVP-TAE684) ApexBio Technology Cat#A8251

Temozolomide ApexBio Technology Cat#B1399

TH287 ApexBio Technology Cat#B5849

Tivozanib (AV-951) ApexBio Technology Cat#A2251

Topotecan HCl ApexBio Technology Cat#B2296

Torin 1 ApexBio Technology Cat#A8312

Torin 2 ApexBio Technology Cat#B1640

Triptolide ApexBio Technology Cat#A3891

TW-37 ApexBio Technology Cat#A4234

Vinblastine sulfate ApexBio Technology Cat#A3920

Vincristine ApexBio Technology Cat#A1765

Vorinostat ApexBio Technology Cat#A4084

YM-155 HCl ApexBio Technology Cat#A3947

Erastin2 Cayman Chemical Cat#27087

Erlotinib LC Laboratories Cat#E-4007

Valinomycin Millipore-sigma Cat#V0627

A-1210477 Selleck Chemicals Cat#S7790

Abemaciclib Selleck Chemicals Cat#S5716

Alpelisib Selleck Chemicals Cat#S2814

AZD7762 Selleck Chemicals Cat#S1532

Bibf-1120 (Nintedanib) Selleck Chemicals Cat#S1010

Buparlisib (BKM120, NVP-BKM120) Selleck Chemicals Cat#S2247

Cabozantinib (XL184, BMS-907351) Selleck Chemicals Cat#S1119

Camptothecin Selleck Chemicals Cat#S1288

Ceritinib (LDK378) Selleck Chemicals Cat#S7083

Cisplatin Selleck Chemicals Cat#S1166

Dasatinib Selleck Chemicals Cat#S1021

Dinaciclib (SCH727965) Selleck Chemicals Cat#S2768

Erastin Selleck Chemicals Cat#S7242

Etoposide Selleck Chemicals Cat#S1225

INK-128 (Sapanisertib, MLN0128,TAK-228) Selleck Chemicals Cat#S2811

Ipatasertib (GDC-0068) Selleck Chemicals Cat#S2808

Luminespib (AUY-922, NVP-AUY922) Selleck Chemicals Cat#S1069

Neratinib Selleck Chemicals Cat#S2150

Olaparib (AZD2281, Ku-0059436) Selleck Chemicals Cat#S1060

PF-4708671 Selleck Chemicals Cat#S2163

Pictilisib (GDC-0941) Selleck Chemicals Cat#S1065

Saracatinib (AZD0530) Selleck Chemicals Cat#S1006

SMER 28 Selleck Chemicals Cat#S8240

Taselisib (GDC 0032) Selleck Chemicals Cat#S7103

TGX221 Selleck Chemicals Cat#S1169

Tivantinib Selleck Chemicals Cat#S2753

Trametinib (GSK1120212) Selleck Chemicals Cat#S2673

Volasertib Selleck Chemicals Cat#S2235

Doxorubicin hydrochloride Sigma Aldrich Cat#D1515-10MG

Sytox Green Nucleic Acid Stain ThermoFisher Scientific Cat#S7020

(Continued on next page)
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Deposited Data

GRADE plot function This paper https://github.com/MJLee-Lab/GRADE

Pharmacological response data for 85 drugs studied This paper Table S1

Proliferation and death rates for 85 drugs at each dose This paper Table S2

Experimental Models: Cell Lines

U-2-OS::Nuc Richards et al., 2020 https://pubmed.ncbi.nlm.nih.gov/32251407

Software and Algorithms

Incucyte S3 Essen Biologics 2019B

MATLAB MathWorks R2019a

Prism GraphPad 8.3.1
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Michael

Lee (michael.lee@umassmed.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Source data collected for a panel of 85 drugs at varied doses in U2OS cells are included in Tables S1 and S2. Images and raw cell

counts from images have not been deposited in a public repository due to file size but will be made available upon request. Custom

MATLAB code for computing drug GRADE and generating FV/GR plots are included in Data S1 and on GitHub (https://github.com/

MJLee-Lab/GRADE). Custom MATLAB scripts for image analysis or curve fitting will be made available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and culture conditions
This study uses U2OS cells, which were generated from a female with osteosarcoma. U2OS cells were obtained from ATCC, and

authenticated by STR profiling. Additional analysis was also performed on the LINCS breast cancer cell lines, a panel of 35 cell lines

derived from female donors with various subtypes of breast cancer (Hafner et al., 2019). mKate2 expressing U2OS cells were

generated as previously described (Richards et al., 2020). Cells were grown in Dulbecco’s modified eagles medium (DMEM)

(Cat#MT10017CV, Fisher Scientific) supplemented with 10% fetal bovine serum (Cat# SH30910.03, Lot# AYC161519, ThermoFisher

Scientific), 2 mM L-glutamine (Cat# 02500cl, Fisher Scientific), and penicillin/streptomycin (Cat# 30-002-Cl, Corning). Cell lines were

cultured in incubators at 37C with 5% CO2. For passaging, cells were rinsed with PBS, dissociated with 0.25% trypsin (Cat# 15090-

046, Life Technologies), quenched with complete DMEM, and counted using a hemocytometer. Cells were seeded for experiments

as described in the Method Details section.

Chemicals and reagents
Sytox Green Nucleic Acid Stain (Cat#: S7020) was purchases from ThermoFisher Scientific (Waltham, MA). A23187 (Cat# B6646),

ABT-263 (Navitoclax) (Cat# A3007), ABT-737 (Cat# A8193), Artesunate (Cat# B3662), Axitinib (AG 013736) (Cat# A8370),

AZD2461 (Cat# A4164), Belinostat (PXD101) (Cat# A4096), BI 2536 (Cat# A3965), Bleomycin Sulfate (Cat# A8331), Bortezomib

(PS-341) (Cat# A2614), Bromodomain Inhibitor, (+)-JQ1 (Cat# A1910), BX795 (Cat# A8222), Cediranib (AZD217) (Cat# A1882), Chlor-

ambucil (Cat# B3716), Dacarbazine (Cat# A2197), Docetaxel (Cat# A4394), Entinostat (MS-275,SNDX-275) (Cat# A8171), Everolimus

(RAD001) (Cat# A8169), Flubendazole (Cat# B1759), Flumequine (Cat# B2292), Foretinib (Cat# A2974), GSK J1 (Cat# A4191), Hon-

okiol (Cat# N1672), JNJ-26854165 (Serdemetan) (Cat# A4204), MG-132 (Cat# A2585), MK1775 (Cat# A5755), Niclosamide (Cat#

B2283), Nigericin sodium salt (Cat# B7644), Nilotinib (Cat# A8232), Oubain (Cat# B2270), Paclitaxel (Taxol) (Cat# A4393), Panobino-

stat (LBH589) (Cat# A8178), Pazopanib Hydrochloride (Cat# A8347), PD 0332991 (Palbociclib) HCl (Cat# A8316), RITA (NSC 652287)

(Cat# A4202), RSL3 (Cat# B6095), Sabutoclax (Cat# A4199), Salinomycin (Cat# A3785), SB743921 HCl (Cat# B1590), SGI-1027 (Cat#

B1622), TAE684 (NVP-TAE684) (Cat# A8251), Temozolomide (Cat# B1399), TH287 (Cat# B5849), Tivozanib (AV-951) (Cat# A2251),

Topotecan HCl (Cat# B2296), Torin 1 (Cat# A8312), Torin 2 (Cat# B1640), Triptolide (Cat# A3891), TW-37 (Cat# A4234), Vinblastine

sulfate (Cat# A3920), Vincristine (Cat# A1765), Vorinostat (Cat# A4084), and YM-155 HCl (Cat# A3947) were purchased from ApexBio
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Technology (Houston, TX). Erastin2 (Cat# 27087) was purchased from Cayman Chemicals (Ann Arbor, MI). Erlotinib (Cat# E-4007)

was purchased from LC Laboratories (Woburn, MA). Valinomycin (Cat# V0627) was purchased from MilliporeSigma (Burlington,

MA). A-1210477 (Cat# S7790), Abemaciclib (Cat# S5716), Alpelisib (Cat# S2814), AZD7762 (Cat# S1532), Bibf-1120 (Nintedanib)

(Cat# S1010), Buparlisib (BKM120, NVP-BKM120) (Cat# S2247), Cabozantinib (XL184, BMS-907351) (Cat# S1119), Camptothecin

(Cat# S1288), Ceritinib (LDK378) (Cat# S7083), Cisplatin (Cat# S1166), Dasatinib (Cat# S1021), Dinaciclib (SCH727965) (Cat#

S2768), Erastin (Cat# S7242), Etoposide (Cat# S1225), INK-128 (Sapanisertib, MLN0128,TAK-228) (Cat# S2811), Ipatasertib

(GDC-0068) (Cat# S2808), Luminespib (AUY-922, NVP-AUY922) (Cat# S1069), Neratinib (Cat# S2150), Olaparib (AZD2281, Ku-

0059436) (Cat# S1060), PF-4708671 (Cat# S2163), Pictilisib (GDC-0941) (Cat# S1065), Saracatinib (AZD0530) (Cat# S1006),

SMER 28 (Cat# S8240), Taselisib (GDC 0032) (Cat# S7103), TGX221 (Cat# S1169), Tivantinib (Cat# S2753), Trametinib

(GSK1120212) (Cat# S2673), and Volasertib (Cat# S2235) was purchased from Selleck Chemicals (Houston, TX). Doxorubicin HCl

(Cat# D1515-10MG) was purchased from Sigma-Aldrich (St. Louis, MO).

METHOD DETAILS

Cell Seeding and Drug Addition
U2OS::mkate2+ cells were grown in 10cm dishes (Cat # FB012924, Fisher Scientific). Prior to drug treatment (‘‘ Day�1’’), cells were

trypsinized, counted using a hemocytometer. Experiments were performed in 96-well black-sided optical bottom plates (Cat # 3904,

Corning), with cells seeded at a concentration of 2500 cells per 90 mL of media. Following overnight incubation at 37�Cwith 5%CO2,

drugs were added in growth media containing 500 nM SYTOX Green (10 mL volume; final concentration of 50 nM SYTOX in the well).

Eight- or ten-point half log or full log dilutions for each compound were prepared in 96-well U-bottom storage plates (Cat #: 07-200-

95, Corning) at 10x of their final concentration. Images was collected using the STACK assay (Forcina et al., 2017). Briefly, images

were acquired using the IncuCyte S3 (Essen Biosciences) with settings for the green channel: ex: 460 ± 20; em: 524 ± 20; acquisition

time: 300ms; and red channel: ex:585 ± 20; em: 635 ± 70; acquisition time: 400ms. Data were acquired either every 6-8 hours for 72

hours, or only at 72 hours when kinetic analysis was not needed.

Throughout the study, experiments were performed in biological triplicate. All data were used without omission of any replicates.

Sample size was based on effect sizes and error observed in our prior study using similarmethods (Richards et al., 2020).Whenmulti-

well plates (e.g., 96-well plates) were used, conditions were not randomized, but analysis did evaluate biases associated with plating

location, which were found to be minimal. Edge wells were not used due to compromised proliferation rates.

Live Cell Image Acquisition
Images was collected using the STACK assay detailed in Forcina et al. (2017). Images were acquired using the IncuCyte S3 micro-

scope (Essen Biosciences; 1408x1040 pixels, at 1.24 mm/pixel). Acquisition settings for the green channel were ex: 460 ± 20, em: 524

± 20, acquisition time: 300ms; and red channel were ex:585 ± 20, em: 635 ± 70, acquisition time: 400ms. Imaging was performed

using a 10x objective. For all experiments, on Day 0 just prior to drug addition, images were taken of a control plate treated with

growth media containing 500 nM SYTOX Green as detailed above. For kinetic analysis, images were acquired every 6-8 hours for

every well of each plate for 72 hours. For experiments where kinetic analysis was not used images were collected only at the 72

hour end point.

For some experiments that did not require kinetic analysis, images were acquired using an EVOS FL Auto 2 automatedmicroscope

(ThermoFisher Scientific). Images were acquired using a 10x objective (EVOS 10x objective, Cat #: AMEP4681). Sytox images were

acquired using a GFP filter cube (EVOS LED Cube, GFP, Cat #: AMEP4651, ex: 470/22, em: 525/50, acquisition time: 13.5ms)

Mkate2+ images were acquired using a TexasRed filter cube (EVOS LED Cube TxRed, Cat #: AMEP4655, ex: 585/29, em: 628/

32, acquisition time: 642.0ms).

Flow Cytometry Analysis of Drug Response
Cells were seeded in 6-well dishes at 200,000 cells per well and allowed to attach overnight prior to drug treatment. At selected time

points cells werewashed in PBS, trypsinized, and fixed in 70%ethanol overnight at�20C, permeabilized with 0.25%Triton X-100 for

20 minutes at 4 C and blocked with 1% BSA. For analysis of drug-induced apoptosis, cells were stained with antibodies against

cleaved caspase-3 for 8 hours (1:250 dilution; CAT# 559565, BD Biosciences). For analysis of drug-induced DNA double stranded

breaks, cells were stained with antibodies against phospho-histone H2A.X for 8 hours (1:200 dilution, CAT# 9718, Cell Signaling

Technologies). Followingwashingwith PBS, cells were incubatedwith a goat-anti-rabbit secondary antibody conjugated to Alexa488

(1:250 dilution; CAT# A-11008, ThermoFisher Scientific). Flow cytometry data were collected on a LSR II flow cytometer running

FACS DIVA software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis and statistics
Statistical details can be found in the figure legends, including statistical tests used, exact value and definition of n, definition

of center, and dispersion and precision measures. Death kinetic rates (DO and DR) were determined using MATLAB, as described
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previously (Richards et al., 2020). Statistical enrichments were determined in MATLAB using built-in functions ‘kstest20 or ‘fishertest’
as indicated in the figure legends.

Quantitative Image Analysis
All images collected using the IncuCyte S3 system were analyzed using the IncuCyte Software (Essen Biosciences). Cell counting

parameters were empirically determined using untreated cells and a subset of cytotoxic compounds. Analysis settings for SYTOX

Green+ objects were: Top-Hat segmentation; Radius (mm) between 50 and 100; Threshold(GCU) between 5 and 10; Edge split

on; Edge sensitivity between �25 and�45; Filter area min between 20 and 55; Filter area max between 2600 and 3000; Max eccen-

tricity between 0.90 and 0.95. Analysis settings for mkate2+ objects were: Top-hat segmentation, Radius(mm) between 100 and 110;

Threshold(GCU) between 0.8 and 1; Edge split on; Edge sensitivity between �45 and �35; Filter area(mm2) max between 100 and

110; Filter area(mm2) max between 2600 and 3000. The counts per well for the Sytox+ and mkate2+ objects were exported to excel

and loaded into MATLAB for further analysis. For some experiments that did not require kinetic analysis, images were acquired using

an EVOS FL Auto automatedmicroscope. For images obtained using the EVOSmicroscope, the images were analyzed using custom

MATLAB scripts, available upon request.

Flow Cytometry Analysis
Flow cytometry data were analyzed using FlowJo (v. 10.5.3). For gating cells of interest, FSC/SSC were used to identify cells, and

FL2-A versus FL2-H was used to identify single cells. Cell cycle stage was quantified from the PI intensity using the FlowJo Cell Cycle

analysis built-in function, using the Dean-Jett-Fox algorithm. To quantify apoptotic cells and/or cells with DNA damage for each cell

cycle stage, area gates were used based on the negative control untreated samples.

Calculation of Drug GRADE
See also Figures 4A and S4 for a step-by-step guide for calculation of drug GRADE. Live cell and dead cell data generated from mi-

croscopy were used to calculate ‘‘fractional viability’’ (live cells divided by total cells; FV). In this study, FV data were not normalized

(i.e., raw data were used), as the baseline cell death observed in U2OS cells in the absence of any drug was very low. In cell lines

which have high basal levels of death, FV values will be much lower than 1 even without any drug exposure. In these cases, GRADE

could be calculated from FV values normalized relative to the basal death rate. Growth rate inhibition metrics (GR) were calculated as

described (Hafner et al., 2016). To calculate drug GRADE, we focused on all doses of a given drug that are less than or equal to the

GR50 dose. Our experimental and simulated data show that the relationship between FV and GR is roughly linear for GR values be-

tween 0 – 1. Thus, for these doses the relationship between GR and FV were fit to a linear function. For most studies, the majority of

the RV scale is captured within the GR 0�1 range, including the IC50 dose. The GR50 is highly correlated with the traditional IC50 (i.e.,

IC50 from an RV dose response curve), so focusing on the positive portion of the GR scale means that drug GRADE will capture the

degree to which cell death contributes to responses observed at the IC50 dose. Drug GRADE was determined using the following

equation:

GRADE =
tan�1

�
mdrug

�
tan�1ðmmaxÞ

where tan-1 is the inverse tangent (‘atan’ function in MATLAB), mdrug is the slope of the linear fit relationship between FV and GR for

doses of GR where GR is greater than or equal to zero, andmmax is the maximum slope observed over the same range of GR values,

given the assumption that the observed response was entirely due to cell death, without any drug-induced slowing of cell prolifer-

ation. Themaximumpossible slopewas determined from simulated experiments as described in Figure 3. Thus, drugGRADE reports

as a percentage the contribution of cell death to the observed response at IC50 dose. A custom function for computing drugGRADE is

available on GitHub (https://github.com/MJLee-Lab/GRADE) and included as Data S1.

Use and interpretation of drug GRADE
Drug GRADE can be calculated using data derived from any experimental platform that provides independent single cell measure-

ments of live and dead cells, including flow cytometry, microscopy, or a SYTOX based plate reader assay (Richards et al., 2020). If the

measurement of cell death is agnostic to themechanism of killing, GRADE can be used to compare drugs that kill by anymechanism.

GRADE values vary from 0 – 100 and report the degree to which cell death contributes to a drug response. For instance, a GRADE of

50 means that 50% of the observed response was due to cell death, with the remainder caused by proliferative arrest. Drug GRADE

can be calculated from the relationship between FV and RV, or FV and GR. If making comparisons between cell types, we recom-

mend using FV and GR, as the GR measurement corrects for artifactual differences in drug response related to differences in assay

length or proliferation rate between cell types. For calculation of drug GRADE key considerations include the doses of drug tested

and the time point(s) analyzed. Regarding doses, stable GRADEs require multiple data points for which GR is between 0 – 1. Ideally,

the majority of this range should also be captured within the doses tested. GRADE can be calculated from essentially any dose

series (2-fold, half-log, log dilution, etc.), given that multiple doses produce responses within the GR 0 – 1 range. For drugs that

are essentially non-functional (GR and FV values > 0.9 at all doses), drug GRADEs are noisy and should not be calculated. These
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limitations/considerations are similar for drugGRADE and formore traditional pharmaco-metrics such as the EC50. Regarding time of

analysis, because FV measures drug-induced cell death, it is critical that measurements be made after the onset time of cell death.

Death onset times vary by drug, and by dose. For drugs in this study, GRADEs change over time but are stable by approximately 48

hours after drug addition.

For some particularly efficacious or toxic drugs, GR values shift at consecutive doses from GR�1 (no response) to GR < 0 (strong

killing resulting in a negative population size). In these situations, only 1 or 0 data points would fall within the desired window for calcu-

lation of GRADE. DrugGRADE should not be calculated from single doses; however, single dosemeasurements of FV andGR can be

used to compute average death rates and average proliferation rates. At any given dose, the average proliferation rate and death rate

of the population can be determined based on the location of the data in the FV/GR plot. An example is shown in Figures S4D and

S4E. Similar to drug GRADE, these values report the relative contribution of cell death and inhibition of proliferation to the observed

response at a given dose. For these data, the death rate and proliferation rate are reported relative to the proliferation rate of un-

treated cells (i.e., 0.05 means 5% of the untreated proliferation rate).

Modeling Growth Curves
The experimental growth curves in this paper were fit using MATLAB’s fit function with the equation: y = aD2bx, where x is time of

analysis, y was the number of live cells at time x, b is the proliferation rate in population doublings per hour, and a is a free coefficient.

The a and b parameters were fit using nonlinear least-squares. Upper and lower bounds of a parameter were constrained using the

min and max of y, respectively. Upper and lower bounds of the b parameter were constrained as 1/100 and 1/10, respectively.

Drug Dose Response Analysis
All dose response functions for relative viability and fractional viability were modeled using a 4-parameter logistic regression model:�

y = a +
d � a

1+ 10ðx�bÞc

�

where x is the log10 transformed drug dose, y is the observed response in RV or FV, a is the Einf, b the log10 transformed EC50, c the

Hill coefficient, and d themaximum y value. Fitting error wasminimized using the nonlinear least-squares method. The lower limits for

a, b, c, and d were 0, min(x)-2, 0.1, and 0; upper limits for a, b, c, and d were 1, max(x)+2, 5, and 1; start points for fitting a, b, c, and

d were 0.5, (median(x)), 1, and 1. GR values were generated as described (Hafner et al., 2016). The GR dose response data was

modeled using a 4-parameter logistic regression model as detailed above, with the exception that the lower limit of a was �1.
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	Drug GRADE: An Integrated Analysis of Population Growth and Cell Death Reveals Drug-Specific and Cancer Subtype-Specific Re ...
	Introduction
	Results
	RV and FV Produce Largely Unrelated Insights about Drug Response
	Relationships between RV and FV Vary Due to Idiosyncrasies in the Strength and Relative Timing of Drug-Induced Proliferativ ...
	Integrative Analysis of Relative and Fractional Drug Responses Reveals a Continuum of Distinct Relationships between Growth ...
	Drug GRADE Captures Distinct Drug Class-Specific Relationships between Drug-Induced Proliferative Arrest and Cell Death
	Drug GRADE Captures Subtype-Dependent Differences in Drug Sensitivity That Are Not Captured Using Traditional Pharmacometrics

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Experimental Model and Subject Details
	Cell lines and culture conditions
	Chemicals and reagents

	Method Details
	Cell Seeding and Drug Addition
	Live Cell Image Acquisition
	Flow Cytometry Analysis of Drug Response

	Quantification and Statistical Analysis
	Data analysis and statistics
	Quantitative Image Analysis
	Flow Cytometry Analysis
	Calculation of Drug GRADE
	Use and interpretation of drug GRADE
	Modeling Growth Curves
	Drug Dose Response Analysis




