
Cui et al., Sci. Adv. 2020; 6 : eabb8543     14 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 15

H E A L T H  A N D  M E D I C I N E

The support of genetic evidence for cardiovascular risk 
induced by antineoplastic drugs
Hui Cui1,2,3*, Shengkai Zuo3*, Zipeng Liu4, Huanhuan Liu3, Jianhua Wang3, Tianyi You3, 
Zhanye Zheng3, Yao Zhou3, Xinyi Qian3, Hongcheng Yao4, Lu Xie5, Tong Liu6,  
Pak Chung Sham4, Ying Yu1,2,3†, Mulin Jun Li3,7†

Cardiovascular dysfunction is one of the most common complications of long-term cancer treatment. Growing 
evidence has shown that antineoplastic drugs can increase cardiovascular risk during cancer therapy, seriously 
affecting patient survival. However, little is known about the genetic factors associated with the cardiovascular risk 
of antineoplastic drugs. We established a compendium of genetic evidence that supports cardiovascular risk in-
duced by antineoplastic drugs. Most of this genetic evidence is attributed to causal alleles altering the expression of 
cardiovascular disease genes. We found that antineoplastic drugs predicted to induce cardiovascular risk are significantly 
enriched in drugs associated with cardiovascular adverse reactions, including many first-line cancer treatments. 
Functional experiments validated that retinoid X receptor agonists can reduce triglyceride lipolysis, thus modulat-
ing cardiovascular risk. Our results establish a link between the causal allele of cardiovascular disease genes and the 
direction of pharmacological modulation, which could facilitate cancer drug discovery and clinical trial design.

INTRODUCTION
Although advances in medical science and therapeutic strategy have 
led to an improvement in the survival of patients with cancer, com-
plications that increase morbidity and mortality have also been 
widely observed (1, 2). Cardiovascular disease (CVD) is one of the 
most common complications of cancer treatment, leading to pre-
mature morbidity and death among long-term cancer survivors (3, 4). 
For example, anthracycline chemotherapy improves disease-free and 
overall survival in patients with breast cancer (5), but it has long 
been noticed that anthracycline drugs, such as doxorubicin, can cause 
dose-dependent cardiotoxicity by redox cycling and free-radical 
formation mediated by topoisomerase-II (6, 7). Another common 
cardiovascular side effect of antineoplastic drugs is observed during 
the treatment of metastatic human epidermal growth factor recep-
tor 2 (HER2)–positive breast cancer using trastuzumab (Herceptin) 
(8, 9). The evident cardiovascular risk induced by antineoplastic drugs 
has impelled researchers to exploit all possible factors that can accu-
rately predict cardiotoxicity (10).

Compared with clinically relevant conditions and outcomes, 
biomarker-dependent assessments, including assessments of genetics, 
epigenetics, and other molecular phenotypes, could facilitate the devel-

opment of evidence-based methods for precise evaluation of cardio-
vascular risk with antineoplastic drugs (11, 12). Since the emergence 
of genome-wide association studies (GWASs) and next-generation 
sequencing (NGS), there has been impressive progress in identifying 
the genetic variants that influence disease risk and prognosis in 
cardio-oncology (13), greatly facilitating their broad usage in clinic 
(14). One canonical discovery is that a nonsynonymous variant of 
RARG confers susceptibility to anthracycline-induced cardiotoxicity 
in childhood cancer by altering the expression of TOP2B (15). A 
recent NGS study revealed that rare genetic variants of the TTN 
gene contribute to the susceptibility of cancer therapy–induced car-
diomyopathy among adult and pediatric patients with cancer (16). 
Such examples (17) and rapid progress in the genetic understanding 
of CVD in huge cohorts, such as that enrolled in the UK Biobank 
(UKBB), introduce the question of how best to connect genetic 
associations in CVD with the potential cardiotoxicity of existing 
antineoplastic drugs to guide treatment selection and dissect the 
underlying mechanisms of side effects (18–21).

Previously, we investigated how well genetic associations predict 
drug mechanisms and whether they could be used to guide drug 
target selection and indications (22). In this study, we hypothesized 
that unintended cardiovascular risk could be partially attributed to 
deleterious mechanisms of action (MOA) in antineoplastic drug–
target (or off-target) interactions and that such effects could be ge-
netically supported by the impact of risk alleles on CVD genes that 
are directly or indirectly linked to the drug target. On the basis of 
30 full GWAS summary statistics of 13 CVDs collected from the 
UKBB and public resources, we identified credible risk variants (CRVs) 
that could potentially cause CVD using statistical fine-mapping. We 
linked these CRVs to target genes to obtain their direction of causal 
effect (DirCE) mediated by risk alleles. Second, using direct gene 
matching and network propagation methods, we investigated the genetic 
evidence for antineoplastic drug–induced cardiovascular risk by iden-
tifying the concordant direction between the MOA of drug targets 
and the DirCE of CRV-associated genes. Third, we used functional 
experiments to investigate the pharmacologic effect of several pre-
dictive drugs, including the retinoid X receptor (RXR) agonists, 
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alitretinoin and bexarotene, on the risk of coronary artery disease. 
Last, we established a predicted catalog of genetically supported 
cardiovascular risk from existing antineoplastic drugs at different 
evidence levels.

RESULTS
Comprehensive integration of CVD GWAS summary statistics 
and antineoplastic drugs for cardiovascular risk prediction
Existing studies have indicated that genetic evidence is an im-
portant predictor of drug target discovery (21, 23–26), drug reposi-

tioning (27–29), and drug side effect identification (30). However, 
no studies have systematically investigated the genetic evidence 
for antineoplastic drug–induced cardiovascular risk, which is fre-
quently observed in the clinic. By assuming that the risk alleles 
of CVD genes share similar biological effects with the deleterious 
MOA of antineoplastic drug–target (or off-target) interactions, 
we first performed a comprehensive scan of genetically supported 
associations between cardiovascular risk and antineoplastic drug 
use (Fig. 1A).

To ensure precise and complete causal variant mapping of CVD, 
we collected extensive CVD GWAS summary statistics from Gene 
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Fig. 1. The pipeline overview for the data collection, processing, and analysis in this study. (A) The DirCEs of CVD-associated genes mediated by risk allele were 
obtained through fine-mapping using collected GWAS summary statistics, VEP annotation, and functional prediction. The drug-target and associated mechanisms were 
obtained and mapped using DGIdb. According to different strategies, including concordance mapping and comprehensive evaluations, the genetic evidence of drug-induced 
cardiovascular toxicity were predicted and demonstrated. MOA, mechanism of action. (B) The number of the GWAS data across the CVD complications. (C) The clinical 
state and target statistics of antineoplastic drugs. (D) The pipeline of DirCE prediction for CVD-associated genes. By integrating GWAS summary information, eQTL effect 
size, and variant functional predictions, we estimated the causal allele effect and its DirCE for CVD-associated genes.
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Atlas on the UKBB cohort (31), the GWAS Catalog (32), GRASP (33), 
GWAS Atlas (34), and PhenoScanner (35), respectively. After 
ontology mapping using the International Classification of Disease, 
10th Revision (ICD-10) or Medical Subject Headings (MeSH), we 
selected 30 nonredundant and fine-mappable CVD GWAS results 
from large European (EUR) cohorts (table S1). According to the 
official classification of cardiovascular toxicity by the European 
Society of Cardiology (10), we further grouped these mapped terms 
into 13 cardiovascular complications (Fig. 1B and fig. S1). We found 
that coronary artery disease incorporates more studies compared 
with other complications in our collection.

Antineoplastic drugs and target information were collected from 
the Drug Gene Interaction Database (DGIdb) (36) and the AdisInsight 
Database. Out of a total of 13,051 drugs, 2197 antineoplastic drugs 
were preserved after mapping to OncoTree. Because we were required 
to consider the MOA of drug-target interactions in the following 
analysis, only drug targets with known MOA were preserved, yielding 
1191 drugs, 10,555 indications, and 4408 drug-target MOA (table S2). 
Our statistics on the clinical status of drugs showed that clinical trial 
drugs account for the largest proportion (48.95%), followed by the 
U.S. Food and Drug Administration (FDA)–approved drugs (42.65%) 
and drugs in the experimental stages (8.40%) (Fig. 1C). Many of these 
drugs have multiple targets (fig. S2A) and indications (fig. S2B). In 
addition, we found that a majority of drug-target MOA belong to 
the inhibition class (Fig. 1C). Among the antineoplastic drugs iden-
tified, we showed the top 30 tumor types according to the number 
of drugs (fig. S2C). The number of drugs used to treat breast cancer 
was the greatest, followed by the number of drugs used to treat 
non–small cell lung cancer.

Multiscale functional predictions to identify causal  
allele effect of CVD genes
To determine the DirCE of CVD genes mediated by each risk locus, 
we identified CRVs that potentially cause CVD using statistical fine-
mapping. We then linked these CRVs to their target genes (Fig. 1D). 
FINEMAP (37) was applied to each of the 30 CVD GWAS results, 
and linkage disequilibrium (LD) block-wise CRVs were identified 
under a single causal variant per LD block assumption (see Methods). 
We found that the number of causal loci and CRVs varied among 
these CVD GWA studies, but, in general, they followed a positive 
correlation (Fig. 2A). Coronary artery disease, hypertension, and 
atrial fibrillation obtained the greatest number of causal loci and 
CRVs, which is consistent with the results of current genetic studies 
on CVD (18, 38, 39).

We annotated CRVs using ensembl variant effect predictor (VEP) 
(40) and classified variant annotation consequences into protein- 
truncating, missense, and other types of variant according to the 
function affected. These CRVs at different levels were then linked to 
potential target genes using their genomic location and Genotype- 
Tissue Expression (GTEx) cis-expression quantitative trait loci (eQTLs) 
in cardiovascular tissues. As a result, we obtained 5 protein-truncating 
CRV genes, 18 missense CRV genes, and 146,529 regulatory CRV 
genes involving 717 unique genes and 850 CVD-gene pairs (Fig. 2, 
B and C). For regulatory CRV genes, most of the CRVs were located 
in introns and upstream/downstream of cis-eQTL genes (fig. S3). 
A comparison of these CRV genes in each of the disease types showed 
distinct expression patterns among human tissues. For example, the 
CRV genes for coronary artery disease and myocardial infarction 
were uniquely expressed in the heart, while the CRV genes for atri-

al fibrillation displayed similar expression patterns in the heart and 
adrenal gland (fig. S4), indicating that the causal tissues of certain 
CVDs could be complex.

For each CRV-gene pair in different categories, we predicted the 
DirCE, including loss of function (LoF) or gain of function (GoF), 
by inferring the risk alleles of CRVs on target genes (Fig. 1D). For 
example, we could predict whether a missense risk allele causes 
deleterious or activating consequences on protein function using 
bi-directional sorting intolerant from tolerant (B-SIFT) algorithm (41). 
We could also determine how a regulatory risk allele controls the 
expression of a target gene by an effect size of tissue-matched eQTL (see 
Methods). We found that the DirCE of CVD genes mediated by risk 
alleles was roughly balanced between LoF and GoF (Fig. 2B), which was 
significantly different from the MOA of antineoplastic drug targets.

Because of the limited CRVs or unqualified allele effects for several 
cardiovascular complications, we only observed valid DirCE of CRV 
genes for six CVDs, including coronary artery disease, hypertension, 
atrial fibrillation, myocardial infarction, thromboembolic disease, and 
other unclassified arterial diseases (Fig. 2C). Among 850 CVD-
associated gene pairs, most contained multiple CRVs and incorpo-
rated conflict DirCEs. Thus, we investigated the DirCEs of each 
CVD-associated gene and found that only 33 CVD-associated genes 
(3.9%) obtained inconsistent predictions of risk allele effects (16 of 
them had a conflict rate of >0.05) (fig. S5 and table S3). This could 
demonstrate the reliability of our DirCE prediction and provide 
mechanically distinguishable genetic evidence for the cardiovascular 
risk–associated drug analysis.

Mapping antineoplastic-induced cardiovascular risk by 
direct gene matching
By assuming a shared biological mechanism between deleterious 
MOA of antineoplastic drug–target interactions and risk alleles of 
CVD-associated genes, we first used a direct gene matching strategy 
to investigate the concordant direction between the MOA of drug-
target interactions and the DirCE of CRV genes. In short, we required 
that the drug target be the same as the CRV-associated gene, and the 
direction between the drug-target MOA and DirCE should be con-
sistent (i.e., activation versus GoF and inhibition versus LoF). As a 
result, we obtained 2369 direct gene-matching evidence for five CVDs 
and 86 oncological drugs (Fig. 3A). Of note, hypertension had the 
greatest number of associated drugs supported by the most genetic 
evidence. Conversely, coronary artery disease only had a small number 
of drugs but contained the greatest number of associated genes 
(Figs. 2C and 3A). Most of the gene-based evidence came from the 
regulatory effects of CRVs, which is probably due to the fact that 
noncoding regulatory variants explain a larger proportion of the 
heritability of CVD (Fig. 3B). This may also suggest that when the 
drug’s direct target (or direct off-target) is the same as the CVD 
causal gene, the side effects of the drug on the cardiovascular system 
are more likely to share similar but not identical mechanisms to the 
risk allele by altering the expression of CVD genes.

Among the gene-based evidence, we observed evidence of cardio-
vascular toxicity with the aminopeptidase inhibitor, tosedostat, which 
was genetically supported by a protein-truncating CRV in hyper-
tension (Fig. 3, B and C). The single-nucleotide variant (SNV) of 
rs33966350 (G>A, ENPEP:p.Trp317*) was detected as a risk variant 
for essential hypertension in the UKBB GWAS results from Gene 
Atlas (GWAS P = 2.63 × 10−12) (31). Several large-scale GWASs also 
identified that rs33966350 was an independent signal associated 
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with hypertension (20, 42, 43). The A allele of rs33966350 was pre-
dicted to be a causal allele by GWAS fine-mapping [posterior prob-
ability (PP) = 0.10315] and was thought to introduce stop-gained 
function, which results in a truncated Glutamyl Aminopeptidase 
(ENPEP) protein. ENPEP encodes aminopeptidase A in the renin- 
angiotensin-aldosterone system and converts angiotensin (Ang) II 
into Ang III. Ang II causes vasoconstriction, while Ang III promotes 
vasodilation and protects against hypertension (44), implying that 
LoF of the ENPEP protein may lead to an increase in blood pressure 
due to long-lasting Ang II signaling.

On the other hand, tosedostat is an inhibitor of the M1 family of 
aminopeptidases and has a direct binding affinity for ENPEP. Tosedostat 
has demonstrated antineoplastic activity in several models of cancer, 
and it also entered phase 2 clinical trials for patients with hemato-
logical or pancreatic malignancies. We predicted the tosedostat-
induced hypertension risk according to the concordant direction 
between the inhibition effect of tosedostat-ENPEP and the LoF 
effect of truncated ENPEP mediated by the risk allele of rs33966350 
(Fig. 3C). This genetic evidence also highlights the necessity of blood 
pressure monitoring during long-term systemic reduction of amino-
peptidase A activity (42). Because the associated genes of particular 
CVDs usually contain numerous estimated CRVs and one antineo-

plastic drug may incorporate multiple targets or off-targets, for each 
drug-CVD side effect, we observed genetic evidence that was sup-
ported by different causal alleles (Fig. 3D). For example, we found 
that tosedostat may induce atrial fibrillation by inhibiting C9orf3, 
which is supported by an abundance of consistent genetic evidence 
and clinical trials (45).

Inferring antineoplastic-induced cardiovascular toxicity 
using network random walk
Using a direct gene matching strategy, we found that almost all 
genetic evidence was attributed to the causal risk allele altering the 
expression of CVD-associated genes, which implies the rare possi-
bility of identical biological mechanisms between deleterious MOA 
of antineoplastic drug–target interactions and disease-causal alleles 
in CVD-associated genes. To investigate whether the shared mech-
anism could be transmitted through signaling pathways or molecular 
interactions, we further designed a network propagation strategy to 
build and score path connections between drug targets and CVD-
associated genes. By integrating the signaling pathway and protein-
protein interaction (PPI) network, we constructed a fused directional 
biological network involving 10,009 gene nodes and 116,283 associated 
edges, which only contain inhibition and activation effects (table S4). 
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Fig. 3. Antineoplastic-induced cardiovascular risk predicted by direct gene matching and network random walk. (A) The number of oncological drugs among 
CVDs. The y axis represents the number of drugs. The color and size of the circle mean the number of CRV gene evidence and associated genes for each CVD. Hypertension 
(1592 CRV genes and 9 genes), atrial fibrillation (421 CRV genes and 4 genes), coronary artery disease (315 CRV genes and 7 genes), other arterial diseases (12 CRV genes 
and 1 gene), and myocardial infarction (29 CRV genes and 2 genes). (B) The types of causal allele effect of CRVs among predicted drug-induced CVDs in the direct gene 
matching method. (C) The schematic diagram of possible genetic evidence and mechanism for the tosedostat-induced hypertension risk in the direct gene matching 
strategy. (D) The number of the genetic evidence for each CVD-drug pair by direct gene matching. (E) The number of the CRV-path evidence for each CVD-drug pair by 
network propagation. (F) The schematic diagram of possible genetic evidence and mechanism for bexarotene-induced coronary artery disease risk.
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To measure the relationship between the objective gene and related 
network genes, we calculated the probability of random walk with 
restart and filtered out unlikely connections by thresholding proba-
bilities below the inflection point of the probability accumulation 
curve (fig. S6). We deduced the most likely molecular mechanism 
upon the shortest path connecting drug targets and CVD-associated 
genes and estimated the concordant direction between the MOA of 
drug-target interactions and the DirCE of CRV-associated genes 
(see Methods).

Through this network strategy, the genetic evidence in support 
of antineoplastic-induced cardiovascular risk was greatly expanded, 
involving 812 antineoplastic drugs in six CVDs (fig. S7). The 
amount of network-level evidence was far more than that obtained 
by direct gene matching, which also incorporated 33 CRV paths 
supported by missense variants. Because of the complexity of the 
biological network, we observed a large amount of genetic evidence 
in different pathways for a unique drug-CVD side effect (Fig. 3E). 
For example, bosutinib, vandetanib, and ponatinib had the greatest 
amount of network-level evidence in hypertension.

For the regulatory CRV paths, we found that the investigational 
drug, uprosertib, obtained a large amount of network-level evidence 
in atrial fibrillation. The causal alleles of atrial fibrillation could 
down-regulate the THRB gene and negatively regulate thyroid hormone 
signaling, thereby inhibiting the phosphatidylinositol 3-kinase–AKT 
pathway (46). Uprosertib is an AKT inhibitor, and its MOA exhibit 
consistent direction with the DirCE of THRB mediated by causal 
variants of atrial fibrillation (fig. S8). It has been reported that inhi-
bition of the PIK3CA-AKT-Bad pathway could increase the risk of 
atrial fibrillation (47), which is consistent with our prediction. The 
network-level results also incorporate evidence supported by dele-
terious missense variants (fig. S9). For instance, we predicted an 
increased risk of coronary artery disease with bexarotene (RXR 
agonist), which was genetically supported by a rare nonsynonymous 
CRV (Fig. 3F). The common allele, G, of SNV rs116843064 (A>G, 
ANGPTL4:p.K40E) was detected as a risk allele for coronary artery 
disease in several GWASs (18, 48). This variant was predicted to be 
a highly causal signal by GWAS fine-mapping (PP = 0.996) and 
could introduce GoF in ANGPTL4 according to B-SIFT prediction. 
ANGPTL4 encodes angiopoietin-like proteins, which inhibit lipo-
protein lipase (LPL), implying that GoF in the ANGPTL4 protein 
may lead to an increase in plasma lipids due to dysfunction in lipid 
metabolism (49). On the other hand, bexarotene is an agonist of the 
retinoic acid receptor family of proteins and has a direct binding 
affinity for RXRA, indirectly promoting the expression and secretion 
of Angiopoietin Like 4 (ANGPTL4) (50). Therefore, we predicted the 
bexarotene-induced coronary artery disease risk according to the 
consistent direction between the activation effect of bexarotene ➔ 
RXRA ➔ ANGPTL4 and the GoF effect of ANGPTL4:p.K40E 
(Fig. 3F). Recent clinical studies also reported that bexarotene induces 
triglyceride (TG) elevation and hypertriglyceridemia (51, 52), which 
may cause CVD development in the long term.

Functional experiments validate that RXR agonists  
can reduce TG lipolysis
To measure the efficacy of our genetics-based predictions and vali-
date the likely molecular pathway underlying antineoplastic-induced 
cardiovascular toxicity, we investigated the pharmacologic effect of 
aforementioned RXR agonists, such as bexarotene and alitretinoin, 
on the risk of coronary artery disease using a series of functional 

experiments. Many studies have shown that a high TG level is asso-
ciated with an increase in CVD risk (53, 54). In our prediction, RXR 
agonists could modulate TG metabolism through LPL and its well-
characterized inhibitor, ANGPTL4 (Fig. 3F). Because ANGPTL4 and 
LPL are both mainly synthesized in adipocytes (55), we used differ-
entiated 3T3-L1 adipocytes to test whether alitretinoin and bexarotene 
can reduce lipolysis of TGs through the RXR ➔ ANGPTL4 –| LPL 
pathway. As expected, we found that Angptl4 mRNA was increased 
2.8- and 10-fold after alitretinoin and bexarotene treatment, respec-
tively (Fig. 4A). However, the RXR antagonist, UVI3003, completely 
abolished the increase in Angptl4 expression (Fig. 4A). Similarly, 
alitretinoin- and bexarotene-treated differentiated 3T3-L1 adipocytes 
expressed more Angptl4 protein compared with the control group. 
This effect was inhibited by UVI3003, as evaluated by Western blot 
(Fig. 4B) and immunofluorescence (Fig. 4C). Consistently, there 
was a higher TG level (Fig. 4D) and less LPL activity (Fig. 4E) after 
both alitretinoin and bexarotene treatment in differentiated 3T3-L1 
adipocytes. These effects were abolished by UVI3003. To verify that 
Angptl4 is the direct effector protein of alitretinoin and bexarotene, 
Angptl4 was knocked down by treatment with small interfering RNA 
(siRNA). Specific siRNA caused a 58% decrease in Angptl4 mRNA 
(Fig. 4F). Si-Angptl4 infection also blunted the augmented Angptl4 
expression in alitretinoin- and bexarotene-treated differentiated 3T3-
L1 adipocytes (Fig. 4G). Furthermore, Angplt4 gene silencing with 
specific siRNA eliminated the effect of alitretinoin and bexarotene 
on TG (Fig. 4H) and reduced LPL activity (Fig. 4I) in differentiated 
3T3-L1 adipocytes.

By constructing 3T3-L1 cells stably expressing different ANGPTL4 
alleles, we observed that differentiated 3T3-L1 adipocytes expressing 
ANGPTL4 (118G) produced more TG compared with differentiated 
3T3-L1 adipocytes expressing ANGPTL4 (118A) (fig. S10, A and B), 
implying a shared biological effect between risk alleles of CVD genes 
and antineoplastic drugs. To evaluate the potential adverse effect of 
adipocyte-secreted TGs on cardiovascular tissues/cells, we cocultured 
human umbilical vein endothelial cells (HUVECs) with differenti-
ated 3T3-L1 adipocytes stably expressing ANGPTL4 and measured 
the expression of three endothelium-derived inflammatory or stress 
factors, including adhesion marker E-selectin, vascular cell adhe-
sion molecule 1 (VCAM1), and intercellular adhesion molecule 1 
(ICAM-1) (fig. S10C). Compared with untreated and ANGPLT4 
(118A) 3T3-L1 adipocyte–treated conditions, HUVECs cocultured 
with differentiated ANGPLT4 (118G) 3T3-L1 adipocytes exhibited 
a significant increase in the expression of E-selectin, VCAM1, and 
ICAM-1 (fig. S10D). This suggests that the genetic effect of different 
ANGPTL4 alleles could be transmitted to the cardiovascular system. 
In summary, these experiments support our genetic prediction that 
alitretinoin and bexarotene reduce TG lipolysis through RXR/
ANGPTL4 signaling and further modulate the risk of coronary 
artery disease.

Evaluation of genetics-based predictions of  
antineoplastic-induced cardiotoxicity
To investigate whether our genetic predictions of antineoplastic-
induced cardiovascular risk (table S5) occurred by chance, we first 
used a PubMed text-mining method to produce an independent 
literature-based association analysis of predicted CVDs and anti-
neoplastic drugs. Presumably, whether the set of drugs predicted to 
have CVD side effects (hereinafter referred to as predicted positive 
drugs) are more likely to be associated with CVD than the set of 
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antineoplastic drugs predicted to have no CVD side effects (hereinafter 
referred to as predicted negative drugs) in PubMed articles could be 
determined by counting the number of articles that mention predicted 
drugs or CVDs individually and comparing them to the number of 
articles that mention both. If the number of articles that mention 
both predicted positive drugs and CVDs is higher than expected, 
then the hypothesis could be validated (56). We queried PubMed 
using two keyword sets, including six CVDs and all 1191 anti-
neoplastic drugs involved in the analysis, respectively. After some 
calculation, we obtained 115,066 articles mentioning both CVDs 
and 814 predicted positive drugs and 31,604 articles incorporating 
CVDs and 377 predicted negative drugs. A total of 2,568,289 arti-
cles mentioned predicted positive drugs but not CVDs, and 998,939 
articles mentioned predicted negative drugs but not CVDs. Then, 
using a one-tailed Fisher’s exact test, we found statistically signifi-
cant enrichment of CVD occurrence in articles mentioning predicted 
positive drugs (P < 2 × 10−16, odds ratio = 1.416), indicating the 
effectiveness of our predictions (Fig. 5A).

A disadvantage of the above PubMed testing method is that it 
does not consider the context in which the CVD and/or the drug are 
mentioned in an article, although this assessment had a very large 
sample size and was extremely significant. This prevents us from 
distinguishing whether the association was attributed to the side 
effects of the drug. We used SIDER, a curated resource for record-
ing adverse drug reactions (57), to evaluate our predicted results. 
Among 223 overlapped antineoplastic drugs in SIDER 4.1 and the 
present study (out of 1191 drugs), we found 157 predicted positive 
drugs and 139 drugs with adverse CVD events in SIDER. We also 
identified 104 predicted positive drugs, which had adverse CVD 
events in SIDER. This indicates that our predicted positive drugs are 
significantly enriched in drugs recorded to have CVD adverse reac-
tions (P = 0.04456, odds ratio = 1.734, one-tailed Fisher’s exact test), 
further demonstrating that antineoplastic-induced cardiovascular 
risks can be correctly predicted by assessing genetic associations in 
CVD (Fig. 5B). This moderate significance but higher odds ratio com-
pared with the PubMed text-mining assessment could be attributed 

0

5

1 0

1 5

− − −
− − +−+

+ +

DMSO

UVI3003

Alitretinoin:

Bexarotene:
R
el
at
iv
e 
m
R
N
A 
le
ve
l

of
 A
ng
pt
l4

−− − +− + −+− +
− −+ −+− +− +

A
ng
pt
l4

M
er
ge
d

D
AP

I

DMSO

− − + −+
−− −+ +

0

1

2

3

4

5

− − −
− − +−+

+ +

0

5 0

1 0 0

1 5 0

− − −
− − +−+

+ +

R
el
at
iv
e 
TG

 le
ve
ls

R
el
at
iv
e 
LP

L 
ac
tiv
ity

DMSO

UVI3003

DMSO

UVI3003

−− − +− + −+− +
− −+ −+− +− +

0 .0

0 .5

1 .0

1 .5

R
el
at
iv
e 
m
R
N
A 
le
ve
l

of
 A
ng
pt
l4

Scramble

si-Angptl4

0

5 0

1 0 0

1 5 0

− − −
− − +−+

+ +

0

2

4

6

− − −
− − +−+

+ +

R
el
at
iv
e 
TG

 le
ve
ls

R
el
at
iv
e 
LP

L 
ac
tiv
ity

Scramble

A

B

C

D E F

G H I

−

si-Angptl4

Alitretinoin:

Bexarotene:

UVI3003

Alitretinoin:

Bexarotene: −
Angptl4

HSP90

DMSO UVI3003

Alitretinoin:

Bexarotene:

Alitretinoin:

Bexarotene:

Alitretinoin:

Bexarotene:

Alitretinoin:

Bexarotene:

Alitretinoin:

Bexarotene:

Angptl4

HSP90

Scramble si-Angptl4

Fig. 4. In vitro experimental validation of the effect of alitretinoin and bexarotene on the GoF of Angptl4. (A) Angptl4 gene expression measured by RT-qPCR in 
differentiated 3T3-L1 adipocytes. Angptl4 mRNA levels were normalized by -actin. Differentiated 3T3-L1 adipocytes were incubated for 24 hours in the presence of DMSO 
(control), alitretinoin (10 M), bexarotene (0.2 M), or UVI3003 (10 M). Data represent mean ± SEM. **P < 0.01 and ***P < 0.001 (unpaired two-tailed t test); n = 8 to 10 
for all groups. (B to E) Differentiated 3T3-L1 adipocytes were stimulated with DMSO (control), alitretinoin (10 M), bexarotene (0.2 M), or UVI3003 (10 M) for 48 hours, 
and then Angptl4 protein expression was determined by Western blotting (B) and immunofluorescence (C); relative TG level (D) and heparin-releasable LPL activity (E) 
were measured by TG assay and LPL assay kit. Scale bar, 50 m; data represent mean ± SEM. *P < 0.05 and **P < 0.01 versus control (unpaired two-tailed t test); n = 4 to 6. 
(F) RNA expression was analyzed by RT-PCR for the knockdown efficiency of Angptl4 siRNA (si-Angptl4) on Angptl4 expression in differentiated 3T3-L1 adipocytes. The 
nonspecific siRNA (Scramble) used as control. Data represent mean ± SEM. *P < 0.05 versus control (unpaired two-tailed t test); n = 3 to 4. (G to I) Effects of DMSO (control), 
alitretinoin (10 M), or bexarotene (0.2 M) on the expression of Angptl4 protein expression (G), relative TG level (H), and heparin-releasable LPL activity (I) in the absence 
of Scramble or si-Angptl4. Data represent mean ± SEM. *P < 0.05 versus control (unpaired two-tailed t test); n = 4 to 6.
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to the smaller sample size. Conversely, by requesting discordant di-
rection between the MOA of drug-target interactions and the DirCE of 
CRV-associated genes, we identified 814 antineoplastic drugs without 
predicted cardiovascular risk. Following the same validation crite-
ria above, we did not observe significant enrichment of CVD side 
effects for these drugs (P = 0.2547, odds ratio = 1.262, one-tailed 
Fisher’s exact test) (fig. S11), which further supports the validity of 
our cardiovascular risk predictions.

To illustrate the genetic evidence of cardiovascular risk for commonly 
used FDA-approved drugs, we first curated 178 first-line antineo-
plastic drugs from the latest National Comprehensive Cancer Network 
(NCCN) (table S6). In our predictions, we found 115 of 178 drugs 
that might induce cardiovascular side effects in different genetic con-
ditions and at different evidence levels. Through searching PubMed, 
85 of 115 (73.9%) predicted positive drugs were validated with reported 
adverse CVD events. We also found that 67 of 78 (86.9%) SIDER-
included drugs displayed adverse CVD events (table S7), indicating 
good power in our genetic-based prediction. For example, a first-line 
anticolorectal cancer drug, regorafenib, was predicted to induce hyper-
tension, which is consistent with observations in clinical practice (58, 59). 
Another classical example was that trastuzumab-induced cardiac 
dysfunction was recorded in our prediction, encompassing myocar-
dial infarction, atrial fibrillation, and coronary artery disease (8, 9).

According to the drug properties, we further divided these first-
line drugs into chemotherapy drugs (28 of 42), targeted therapy 

drugs (37 of 50), immunotherapy drugs (10 of 21), and others (40 of 65). 
For each drug category, we used Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis to test the possible biological 
pathways for CVD-associated gene sets with concordant DirCE 
supporting cardiovascular toxicity. We found that the CVD-associated 
genes linked to the side effects of chemotherapy were significantly 
enriched in hypoxia inducible pathway and the human T lympho-
tropic virus type 1 infection pathway, while CVD genes relevant to 
the side effects of cancer-targeted therapy were significantly enriched 
in pathways for epidermal growth factor receptor tyrosine kinase 
inhibitor resistance, stem cell pluripotency regulation, blood co-
agulation, and insulin resistance (fig. S12). These results imply that 
the biological mechanisms underlying antineoplastic drug–induced 
cardiotoxicity vary among drug types, which could be affected by 
shared pathogenic signaling between cancer and CVD.

In addition to the above global evaluations, we also illustrated some 
of our predictions for well-established and frequently used anti
neoplastic drugs with known cardiovascular side effects. As the most 
common chemotherapy approach, anthracycline-involved treatment 
improves overall survival but may induce severe or life-threatening 
heart failure in some individuals (5, 60). Mechanistically, anthracy-
cline can cause dose-dependent cardiotoxicity by redox cycling and 
free-radical formation mediated by topoisomerase-II (6, 7). Our 
genetic evidence shows that individuals who carry the hypertension 
risk allele, C, of rs7222781 might have greater expression of CDC27. 

CVDs 
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ChEMBL ID

Articles in corpus 3,713,898

Articles queried by predicted drugs 2,683,355

Articles queried by CVDs and in corpus 146 670
Comentioned articles 115,066PubMed 
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          1191

Drugs from SIDER4.1
            1430
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P = 0.04456
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Fig. 5. Evaluation of cardiovascular toxicity prediction. (A) The evaluation through an independent literature-based association analysis. (B) The evaluation according 
to the recorded adverse drug reactions. (C) The genetic evidence and possible mechanism for anthracycline-induced hypertension risk. (D) The genetic evidence and 
possible mechanism for ponatinib and BCR-ABL1 tyrosine kinase inhibitor (TKI)–induced coronary artery disease risk.
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Thus, through the CDC27 –| CCNE2 –| RBL2 –| TOP2A cell cycle 
signaling and DREAM complex regulation network (61, 62), TOP2A 
expression could be suppressed. TOP2A forms a complex structure 
with TOP2B, which is essential during mitosis and meiosis (63). 
Anthracycline can inhibit TOP2A, which has the same function as 
the effect of risk allele–mediated pathways in hypertension (Fig. 5C). 
Thus, anthracycline-induced cardiotoxicity could be supported by 
our genetic-based prediction. In addition, ponatinib and other 
BCR-ABL1 tyrosine kinase inhibitors have been linked to widespread 
cardiovascular events in patients with chronic myeloid leukemia (64, 65). 
We found that several CRVs in coronary artery disease can down-
regulate EPHA3 expression and inhibit ABL1 activity through the 
axon guidance pathway and PPIs (66). Therefore, ponatinib-induced 
cardiovascular risk can be validated by the consistent direction be-
tween the CRV effect in coronary artery disease and the drug mech-
anism of BCR-ABL1 tyrosine kinase inhibitors (Fig. 5D).

DISCUSSION
Cardiovascular toxicity during cancer therapy has become a non-
negligible complication that affects patient survival. However, there 
is little guidance about how genetic factors influence the potential 
cardiovascular toxicity of antineoplastic drugs. In this study, by 
leveraging summary statistics of large cohort CVD GWASs, we in-
troduced a computational strategy to align the MOA of antineo-
plastic drug–target interactions and the risk allele effect on CVD gene. 
For the first time, we established a compendium of genetic evidence 
for cardiovascular risk induced by current antineoplastic drugs with 
different levels of evidence. One of the most distinctive merits of 
this study comes from identification of CRVs using GWAS statistical 
fine-mapping and predicting the DirCE for associated CVD genes 
mediated by risk alleles. We also improved the confidence in link-
ing noncoding risk alleles to target genes using GTEx eQTLs and 
their effect size in CVD-associated tissues. Last, in addition to the 
direct gene matching–based prediction, we applied a network prox-
imity scheme to score path connections between drug targets and 
disease genes in directional biological networks, which significantly 
extended the capability of side effect prediction.

Our predictions revealed that a large fraction of antineoplastic 
drugs can cause potential cardiotoxicity with different levels of evi-
dence. Among these drugs, 38.6% are FDA-approved and 53.6% 
have been tested in clinical trials, which implies that cardiovascular 
risk induced by antineoplastic drugs may be mild and may be a 
long-term process in the general population (4). However, such ac-
cumulated risk could be prominent in patients who carry particular 
alleles that confer susceptibility to CVD. Thus, according to our ge-
netic evidence, we could advise patients with cancer with certain 
CVD risk alleles to avoid or reduce treatment with certain antineo-
plastic drugs. On the other hand, the support of genetic evidence for 
antineoplastic-induced cardiotoxicity will help future target selec-
tion or drug repositioning in cancer drug development.

Recent enrichment analysis has shown a significant correlation 
between the organ systems affected by disease-associated drug tar-
get variants and the organ systems in which side effects are observed 
(30), but it cannot identify which side effect could be modulated by 
drug target genetic variants because of the lack of genetic effect di-
rection. In contrast, our prediction can establish a link between the 
genetically supported DirCE of disease genes and the direction of 
pharmacological modulation, which provides a clue to select optimal 

drug targets with better safety and efficacy and guides patient re-
cruitment to avoid potential side effects during clinical trial design. 
Although we cannot provide accurate prioritization according to the 
identified genetic evidence at present, our predictions can significantly 
facilitate hypothesis-driven pharmacogenetic and pharmacological 
research. The applied methods in this work could also be generalized to 
predict a wide range of side effects for drugs with clear target information.

There are some limitations in the present study that should be 
highlighted. First, the public GWAS summary statistics for CVDs 
could be unbalanced and population-biased. Statistical fine-mapping 
requires full summary information to infer the most likely causal 
variants, but some of the collected GWAS results did not reach the 
minimal requirements and were therefore excluded. For example, 
we only collected the summary statistics from one qualified GWAS 
on hypertension from the UKBB, representing a subset of recent 
multicenter GWASs of blood pressure. Also, most of our collected 
summary statistics were from the EUR population and had large 
sample sizes. To simplify our analysis pipeline, we only used GWASs 
performed in the EUR population. Such biases from disease type, 
sample size, population, and statistical power would cause an under-
estimation in cardiotoxicity induced by antineoplastic drugs. Second, 
we only assumed a single causal signal in each LD block and ne-
glected genetic interactions among multiple variants/loci, such as 
the complex CVD locus 9p21.3, which contains multiple indepen-
dent causal variants that may interact in either a synergetic or an 
antagonistic manner to predispose cardiovascular phenotypes (67), 
which further limits the identification of genetic evidence. Recent 
Mendelian randomization analysis leverages genetic proxies for the 
effect of antihypertensive drug classes to inform drug efficacy and 
side effects, which represents a complementary angle of combined 
genetic effects (68). Third, although we considered directions of 
noncoding risk alleles affecting gene expression in cardiovascular 
tissues, we did not assess effects in other human tissues or effects that 
were controlled by other types of variant, including splicing and 
protein translation-altering variants. This problem could be solved 
using some algorithms that accurately predict disease-causal tissues 
and the direction of the allelic effect in splicing or translation, such 
as the inference from accumulated protein quantitative trait loci data 
(69). In addition, our prediction started with a specific CRV gene in 
CVDs and learned from the STRING PPI network and KEGG path-
ways, so the mechanism we predicted for side effects could be biased. 
For example, our method cannot predict drug-induced cardiotoxicity 
due to functionally impaired drug metabolizing enzymes and/or 
transporters. Last, we cannot distinguish whether the induced car-
diovascular risk is derived from the on-target or off-target effect of 
antineoplastic drugs, which could be attributed to the ambiguous 
definition of the target in our collected drug-related resources. Despite 
the above shortcomings, we believe that the current study could be 
helpful for rational drug target evaluation in drug development and 
could provide an auxiliary reference for selecting patients during 
clinical trials for testing novel or repurposed antineoplastic drugs.

METHODS
GWAS data collection and disease mapping
The CVDs GWAS summary statistics were collected from Gene Atlas 
(31), NHGRI-EBI GWAS Catalog (32), GRASP (33), GWAS Atlas 
(34), and PhenoScanner (35), respectively, which were based on UKBB, 
CARDIoGRAMplusC4D, HUNT, and other large-scale cohorts. 
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We removed duplicate GWAS datasets from the above sources accord-
ing to the PubMed ID and UKBB field of study. Studies containing 
the non-EUR population and insufficient summary information (at 
least P value, effect size, effective allele, and baseline allele) were re-
moved. Then, we mapped the GWAS reported diseases from Gene 
Atlas and GWAS Atlas to ICD-10 and others to MeSH. According 
to the classification of cardiovascular toxicity by the European Society 
of Cardiology, we grouped these mapped terms into nine cardio-
vascular complications, including arrhythmias, coronary artery dis-
ease, artery hypertension, myocardial dysfunction and heart failure, 
pericardial complication, peripheral vascular disease, pulmonary 
hypertension, thromboembolic disease, and valvar heart disease (10). 
In addition, atherosclerosis, atrial fibrillation, myocardial infarc-
tion, and other arterial diseases were listed separately. Each GWAS 
summary statistics was only classed into one cardiovascular compli-
cation for subsequent analysis.

Antineoplastic drugs data collection
The drug information containing drug targets, drug indications, drug 
MOA, and drug status was extracted from DGIdb 3.0 (36). Then, we 
mapped the drug indications to OncoTree (http://oncotree.mskcc.org) 
to retain all antineoplastic drugs. In addition, we reannotated each 
drug with classification by searching in the Adisinsight Database 
(https://adisinsight.springer.com). Last, we normalized MOA for each 
drug-target pair (activation or inhibition) and filtered out the drug 
targets with unknown MOA.

GWAS fine-mapping and potentially causal variant selection
We identified causal variants for each CVD GWAS dataset by several 
steps. First, we leveraged independent LD blocks of the EUR popu-
lation estimated by ldetect (70) to partition genetic variants into LD 
blocks. Then, we used GWAS P < 5 × 10−8 as a filter to select signifi-
cant LD blocks for statistical fine-mapping. Second, for each selected 
LD block, we applied FINEMAP (37) to estimate the PP of causality 
for each variant based on 1000 Genomes Project EUR genotypes 
and single causal variant assumption (71). Third, we selected poten-
tially causal variants in 99% credible set of each locus. To further 
remove false positives, we excluded variants with GWAS P > 1 × 10−5 
and PP < 0.01 if the leading variant is not selected in the credible set. 
To control possible false negatives for variants not available in 1000 
Genome projects, we kept those variants with GWAS P < 1 × 10−5. 
Thus, we constructed CRVs that potentially cause corresponding 
CVD for each GWAS dataset.

eQTL data
The significant cis-eQTLs were downloaded from the portal of GTEx 
project v7 release (72). To ensure the tissues of eQTL data are rele-
vant tissues matching with CVDs, we only included eQTL data 
from cardiovascular tissues including artery-aorta, artery-coronary, 
artery-tibial, heart–atrial appendage and heart–left ventricle.

Linking CRVs to target genes
We annotated CRVs of each CVD with VEP release 94 (40) and ob-
tained variant consequences and gene-level annotations. We mapped 
CRVs to VEP-reported genes if variant shows protein-altering con-
sequences. For the remaining consequences, we assigned CRV to 
its cis-eQTL genes (window of 1 Mb around each gene) using the 
above selected GTEx datasets. In addition, we downloaded the gene 
expression (Transcripts Per Million) across different tissues from 

the GTEx v7 release for the comparison of the expression pattern of 
CRV genes. To compare the expression pattern of CRV genes of each 
CVD across human tissues, we first transferred sample-gene ex-
pression matrix to a concatenate expression vector for each tis-
sue. For each CVD, we used paired sample t test to investigate the 
expression difference of CRV genes between every two tissues by 
considering overlapping samples.

DirCE prediction
According to the risk allele of each CRV, we predicted DirCE for 
each CRV-gene pair in the following three levels. For protein-truncating 
CRVs annotated with “stop_gained,” “frameshift_variant,” “stop_
lost,” and “start_lost” consequences, DirCE was defined as LoF. For 
missense CRVs annotated with “inframe_insertion,” “inframe_
deletion,” and “missense variant” consequences, we predicted the 
functional impact score of risk allele using B-SIFT (41). As suggested 
in the original publication, DirCE was defined as LoF if B-SIFT score 
was less than −0.95 and as GoF if B-SIFT score was higher than 0.5. 
Last, for other (regulatory) CRVs, we harmonized the eQTL effec-
tive allele and its effect size with the risk allele of each CRV. We 
defined DirCE as LoF if the harmonized effect size of risk allele was 
less than zero; otherwise, it was GoF.

Cardiovascular toxicity mapping
We assumed that potential cardiotoxicity could occur if there is a 
concordant direction between the MOA of drug target and the 
DirCE of CRV-associated genes mediated by risk allele. To identify 
this at different levels, we adopted direct gene matching and network 
mapping, respectively. In direct gene matching, we required the 
drug target to be the same as the CRV-associated gene and the 
direction between drug MOA and DirCE to be consistent (i.e., acti-
vation versus GoF and inhibition versus LoF). In the network mapping, 
we applied a random walk with restart strategy to search and score 
path connections between drug target and CVD-associated gene. 
We first integrated a directed biological network by fusing human 
PPI networks from the STRING database (PPI score > 0.7) (73) and 
human signaling pathways from KEGG database (only gene type 
was included) (74). To facilitate the following network inference of 
concordant direction, we only selected interaction pairs with clear 
effect direction (i.e., either activation or inhibition). On the basis of 
the above-integrated network, the relatedness scores (random walk 
probability) between start gene and network genes were calculated 
by walker R package with default restart probability of 0.7 and nor-
malized to sum to 1 (75). To exclude unlikely connections, for each 
start gene (either drug target or disease gene), we drew a probability 
accumulation curve for all scored nodes (normalized probability > 
0) and adopted the probability at the inflection point of curve as the 
filtering threshold. We used igraph R package (76) to calculate the 
shortest path between each start gene and filtered genes. Because 
the network is directed and contains a clear effect for each edge, we 
were able to inspect the outcome of the transmission effect and de-
termine the mechanism for any paths. We assigned 1 to the activa-
tion effect and −1 to the inhibition effect; hence, a final drug-target 
MOA in a given path could be calculated by multiplication of all 
assigned scores in this path. For example, given a path of “drug –| 
geneA ➔ geneB ➔ disease gene,” where “–|” means inhibition and 
“➔” means activation, the MOA of the drug on disease gene could 
be inferred by “−1*1*1 = −1”, which is inhibition ultimately. On the 
basis of this strategy, we mapped CRV-associated genes to the 

 on O
ctober 15, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://oncotree.mskcc.org
https://adisinsight.springer.com
http://advances.sciencemag.org/


Cui et al., Sci. Adv. 2020; 6 : eabb8543     14 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 15

shortest path initiated from drug target (or vice versa) and calculated 
the indirect mechanism for such connection. We also allowed an 
intermediate gene crossed over by two independent paths that start 
from drug target and disease gene, respectively. Last, we investigated 
the concordant direction between MOA of drug target and DirCE 
as described in the direct gene matching strategy.

Drugs and reagents
Alitretinoin was bought from Santa Cruz Biotechnology (Santa Cruz, 
CA). Bexarotene and heparin sodium were purchased from Selleck 
Chemicals (Houston, TX, USA). UVI3003, dexamethasone (DEX), 
3-isobutyl-1-methylxanthine (IBMX), and insulin were obtained 
from Sigma Company (Sigma-Aldrich, St. Louis, MO, USA).

Cell culture, treatment, and transfection
3T3-L1 cells were purchased from Cell Bank (Shanghai Institutes 
for Biological Sciences, CAS, China), cultured, and differentiated 
into the adipocyte as described previously (77). In brief, cells were 
cultured in a humidified atmosphere at 37°C with 5% CO2 and 95% 
room air with culture medium containing Dulbecco’s modified 
Eagle’s medium (Gibco, 11965092) supplemented with penicillin/
streptomycin (50 g/ml; Gibco, 15070063) and 10% (v/v) fetal 
bovine serum (Gibco, 10099141). Differentiation was initiated 1 day 
after confluence by incubation for 7 days with culture medium con-
taining 1 M DEX, 0.5 mM IBMX, and insulin (1 g/ml). Medium 
was changed every other day during all culture or differentiation stages. 
Alitretinoin, bexarotene, UVI3003, or dimethyl sulfoxide (DMSO) 
as a vehicle control was added in differentiated 3T3-L1 cells, for the 
indicated times, and then processed for downstream experiments.

RNA extraction and qRT-PCR
Total RNA from the differentiated 3T3-L1 cells was extracted using 
TRIzol reagent (Life Technologies) according to the manufacturer’s 
method. Total RNA (1 g) was reverse-transcribed to complementary 
DNA (cDNA) by a reverse transcription reagent kit (Takara, Dalian, 
China) according to the manufacturer’s instructions. Angptl4 ex-
pression was normalized to the level of -actin mRNA. The quanti-
tative real-time polymerase chain reaction (qRT-PCR) protocol was 
as follows: 5 min at 95°C for 1 cycle, followed by 40 cycles at 95°C 
for 30 s, 60°C for 30 s, and 72°C for 20 s, and a final extension at 
72°C for 10 min. The relative transcript level of a gene is expressed 
in ∆Ct values (∆Ct  =  Ctreference − Cttarget), and the relative 
changes in transcript levels compared with controls are expressed 
as ∆∆Ct values (∆∆Ct  =  ∆Cttreated – ∆Ctcontrol), as previously de-
scribed (78). The primer sequences were as follows: Angptl4, 5′- 
CCCCACGCACCTAGACAATG-3′ (sense), 5′-GCCTCCATCT-
GAAGTCATCTCA-3′ (anti-sense); -actin, 5′-GGCTGTATTC-
CCCTCCATCG-3′ (sense), 5′-CCAGTTGGTAACAATGCCATGT- 
3′ (antisense).

Western blot analysis
Proteins from the differentiated 3T3-L1 cells were extracted using 
the lysis buffer (Beyotime Biotechnology, Jiangsu, China) with pro-
tease inhibitors. The protein concentrations were determined using 
Pierce BCA Protein Assay Kit (Pierce, Rockford, IL, USA). Equivalent 
levels of proteins were denatured and resolved with 10% sodium 
dodecyl sulfate polyacrylamide gel electrophoresis gels and then 
transferred to nitrocellulose membranes, incubated with 5% skimmed 
milk, and probed with primary antibodies overnight at 4°C. Primary 

antibodies were diluted and listed as follows: anti-Angptl4 (A2011, 
ABclonal Technology, Woburn, MA, USA), anti-HSP90 (A5027, 
ABclonal Technology, Woburn, MA, USA), anti-ICAM1 (sc-107, Santa 
Cruz Biotechnology, Dallas, TX, USA), anti-VCAM1 (sc-13160, Santa 
Cruz Biotechnology, Dallas, TX, USA), anti–E-selectin (20894-1-AP, 
Proteintech Group, Rosemont, IL, USA), and anti–glyceraldehyde-
3-phosphate dehydrogenase (60004-1-Ig, Proteintech Group, 
Rosemont, IL, USA). The membranes were washed and then incu-
bated in horseradish peroxidase–labeled secondary antibody for 
1 to 2 hours at room temperature. Proteins were detected using 
enhanced chemiluminescence reagents (Thermo Fisher Scientific, 
Waltham, MA, USA).

Immunofluorescence staining
3T3-L1 cells were cultured in 12-well plate climbing glass coverslips 
(BD Biosciences) and differentiated for 48 hours at about 50% con-
fluence. The cells were treated with different drugs for 24 hours and 
then fixed in 4% paraformaldehyde for 10 min at room temperature; 
the cells were washed three times with phosphate-buffered saline 
(PBS) and blocked by 3% bovine serum albumin in PBS with 0.1% 
Triton X-100 for 45 min at room temperature. Thereafter, cells were 
incubated with anti-Angptl4 (1:100) antibodies overnight at 4°C. 
After washing three times with PBS, the cells were incubated with 
Alexa Fluor 488–conjugated anti-rabbit immunoglobulin G antibody 
(Invitrogen; 1:1000) for 2 hours at room temperature. The slides 
were mounted in ProLong Gold antifade reagent with 4′,6-diamidino-
2-phenylindole (Invitrogen). All of the immunofluorescence pic-
tures were captured and analyzed using a laser-scanning confocal 
microscope (Carl Zeiss, Oberkochen, Germany). At least five ran-
dom fields were taken in the central region of each glass slide.

TG level and LPL activity
TG level and LPL activity were determined using the TG assay kits 
(Nanjing Jiancheng Bioengineering Institute, Jiangsu, China) and 
Lipoprotein Lipase Assay kit (Abcam, Cambridge, MA, USA), accord-
ing to the manufacturer’s instructions. TG was quantified by spec-
trophotometry (absorbance at 510 nm); LPL activity was measured 
and calculated by fluorescence at Excitation/Emission = 482/515 nm.

siRNA transfection
The siRNA for Angptl4 and the Scramble were from GenePharma 
Company (Shanghai, China). The sequences of Angptl4-siRNAs were 
as follows: Angptl4-siRNA1 sense, GCAUGGCUGCCUGUGGU-
AATT; Angptl4-siRNA1 antisense, UUACCACAGGCAGCCAUGCTT; 
Angptl4-siRNA2 sense, GGGACUGCCAGGAACUCUUTT; 
Angptl4-siRNA2 antisense, AAGAGUUCCUGGCAGUCCCTT; 
Angptl4-siRNA3 sense, CCCUGCUGAUCCAGCCCAUTT; 
Angptl4-siRNA3 antisense, AUGGGCUGGAUCAGCAGGGTT. 
The Angptl4 siRNA or Scramble siRNAs were transfected into dif-
ferentiated 3T3-L1 cells with Lipofectamine 2000 according to the 
manufacturer’s instructions. At indicated times after the transfec-
tion, cells were collected for further analysis.

Lentiviral vector preparation and viral infection
The human ANGPTL4 (118G) gene with green fluorescent protein 
tag was cloned into pCDH via Sal I and Not I restriction en-
zyme from cDNA. The ANGPTL4 (118A) gene was constructed via 
QuickMutationPlus Site-Directed Mutagenesis Kit (Beyotime, 
Shanghai, China) following the manufacturer’s instructions. The 
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ANGPTL4 overexpression vectors were cotransfected with lentiviral 
packaging vectors pMDL, vesicular stomatitis virus glycoprotein, 
and Rev. into HEK293FT cells to generate lentivirus (79). 3T3-L1 cells 
were infected with the collected viruses for 48 hours and screened as 
stable cell lines by using puromycin (1 g/ml). The stable ANGPTL4-
overexpressing cell lines were used to differentiate into the adipocytes.

Coculture experiment
HUVECs were isolated and cultured as described previously (80). 
For the cocultures, ANGPTL4-overexpressed adipocytes were seeded 
on semipermeable membrane supports in 12-well (2 × 105 cells per 
well), 0.4-m pore size transwell plates (Corning, New York, USA). 
After 1 day, membrane inserts with the ANGPTL4-overexpressed 
adipocytes were transferred on top of wells in 12-well plates with 
about 80% confluence HUVECs, and the cells were cocultured for a 
further 24 hours.

Statistical analysis in experiment validations
All data were expressed as the mean ± SEM. Statistical analysis was 
performed using GraphPad Prism 6 (GraphPad Software Inc., San 
Diego, CA, USA). Comparisons between the two groups were assessed 
using the unpaired Student’s t test. For all experiments, P values of 
less than 0.05 were considered statistically significant.

Validation by text mining
We performed text mining on PubMed database to produce an in-
dependent literature-based association analysis for CVDs and anti-
neoplastic drugs. To conduct the text mining, we selected a specific 
antineoplastic drug (drug name or ChEMBL ID from DGIdb) and 
estimated cardiovascular risk (mapped cardiovascular complications 
using standard from European Society of Cardiology) with genetic 
evidence and obtained a contingency table containing the number 
of articles mentioning both (comentioning) of the antineoplastic 
drugs predicted with CVD side effects (hereinafter referred to as 
predicted positive drugs) and the CVDs, the number of articles in-
corporating the CVDs but without the predicted positive drugs, the 
number of articles having the predicted positive drugs but without 
the CVDs, and the remaining number of articles within the corpus 
(the corpus refers to whole articles queried by all the antineoplastic 
drugs we analyzed). These queries were conducted on the Entrez 
Programming Utilities (81) on 14 June 2019. Then, one-tailed Fisher’s 
exact test was used to measure the significance of observing the 
number of articles with comentioning of predicted drugs and CVDs 
given the number of articles mentioning the predicted drugs of 
CVDs individually (82).

Validation by side effect evidence
We extracted drug with cardiovascular side effect information from 
SIDER4.1 (57). Through mapping by drug name, we obtained shared 
antineoplastic drugs between the SIDER database and our predic-
tion. A contingency table was derived by calculating the number of 
comentioned drugs in the SIDER and our result, the number of drugs 
only in our prediction, the number of drugs only in the SIDER, and 
the remaining number of drugs within the overlapped drugs. The 
one-tailed Fisher’s exact test was used to determine whether our ge-
netically supported drugs enriched in the CVD-induced drugs 
annotated in the SIDER database. Also, we applied this validation to 
drug obtained by discordant direction between the MOA of drug-
target interactions and the DirCE of CRV-associated genes.

Evaluation on FDA-approved first-line antineoplastic drugs
We selected the first-line antineoplastic drugs according to NCCN 
(https://www.nccn.org/). Then, we searched for the predicted posi-
tive first-line drugs in the PubMed literature and the SIDER4.1 to 
verify the cardiovascular side effects. For the PubMed literature val-
idation, we searched for the drug name and “cardiovascular risk” as 
the keywords and recorded the PubMed ID for the drug if the article 
mentioned the CVD adverse effect for the corresponding drug. For 
the SIDER database validation, we checked whether the drug had 
been recorded with the CVD adverse effect. We also partitioned these 
first-line drugs into different categories according to drug proper-
ties. For each drug class, we applied the KEGG enrichment analysis 
in Metascape (83) to investigate the likely associated pathway with 
the CVD-associated genes with valid DirCE supporting cardio-
vascular toxicity.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/42/eabb8543/DC1 

View/request a protocol for this paper from Bio-protocol.
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