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Summary 

 

To better understand host-virus genetic dependencies and find potential therapeutic targets for 

COVID-19, we performed a genome-scale CRISPR loss-of-function screen to identify host 

factors required for SARS-CoV-2 viral infection of human alveolar epithelial cells. Top-ranked 

genes cluster into distinct pathways, including the vacuolar ATPase proton pump, Retromer, and 

Commander complexes. We validate these gene targets using several orthogonal methods such 

as CRISPR knock-out, RNA interference knock-down, and small-molecule inhibitors. Using 

single-cell RNA-sequencing, we identify shared transcriptional changes in cholesterol 

biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 receptor 

in the early stages of viral entry, we show that loss of  RAB7A  reduces viral entry by 

sequestering the ACE2 receptor inside cells. Overall, this work provides a genome-scale, 

quantitative resource of the impact of the loss of each host gene on fitness/response to viral 

infection. 

 

 

*   *   * 
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Introduction 1 

As of October 2020, SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2), the 2 

virus that causes COVID-19, has infected 40 million people worldwide and led to the deaths of 3 

more than 1 million people, according to the John Hopkins Research Center (Gardner, 2020). 4 

SARS-CoV-2 belongs to the family of enveloped viruses known as Coronaviridae and was first 5 

reported in late 2019 in China. Over the past two decades, it is the third zoonotic coronavirus to 6 

emerge: Compared to the other two coronaviruses, SARS-CoV (2002) and Middle East 7 

Respiratory Syndrome (MERS)-CoV (2012), SARS-CoV-2 shows an increased infectivity and 8 

lower case-fatality rate, contributing to its wide-spread transmission and resulting in a pandemic 9 

(Gates, 2020; Liu et al., 2020). Given that SARS-CoV-2 has already taken a major toll on human 10 

life and livelihoods worldwide, many research institutions, governmental organizations and 11 

pharmaceutical companies are working to identify antiviral drugs and develop vaccines. 12 

Currently, there are nearly 30 vaccines against SARS-CoV-2 in clinical trials and an FDA 13 

approved antiviral drug (remdesivir) that acts as an inhibitor of the SARS-CoV-2 viral RNA-14 

dependent RNA polymerase (Beigel et al., 2020; Funk et al., 2020). A recent study identified 15 

small molecules that antagonize SARS-CoV-2 replication and infection by testing ~12,000 16 

clinical-stage and FDA-approved inhibitors (Riva et al., 2020). Here, we utilize an alternative 17 

approach — a genome-scale loss-of-function screen — to identify targets among host genes that 18 

are required for SARS-CoV-2 infection. These gene targets (and inhibitors of these genes) may 19 

aid in the development of new therapies for COVID-19. 20 

 21 

SARS-CoV-2 is an enveloped positive-sense RNA virus that relies on host factors for all stages 22 

of its lifecycle (Kim et al., 2020; Zhou et al., 2020). The viral envelope is coated by Spike 23 

protein trimers that bind to angiotensin converting-enzyme 2 (ACE2) receptor, which is required 24 

for SARS-CoV-2 infection (Hoffmann et al., 2020a; Zhou et al., 2020). The Spike protein 25 

undergoes proteolytic cleavage that is catalyzed by several host proteases, such as furin, 26 

TMPRSS2 and Cathepsin L, and can occur in the secretory pathway of the host cell or during 27 

viral entry in the target cell. Proteolytic cleavage is considered to be required for activation of 28 

Spike that in turn allows for viral-host membrane fusion and release of the viral RNA into the 29 

host cytoplasm (Hoffmann et al., 2020b). Once in the cytoplasm, the virus utilizes the host and 30 

its own machinery to replicate its genetic material and assemble new viral particles. Recent 31 
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proteomic studies have identified hundreds of host proteins that directly bind to SARS-CoV-2 32 

viral proteins and have mapped changes in the global protein phosphorylation landscape in 33 

response to viral infection, highlighting the interest in better understanding of host-virus genetic 34 

dependencies (Bouhaddou et al., 2020; Gordon et al., 2020). To date, there are no genome-wide 35 

studies that directly identify human genes required for viral infection, which will be of great 36 

interest and utility for the broader scientific community.   37 

 38 

Here, we perform a genome-scale CRISPR loss-of-function screen in human alveolar basal 39 

epithelial carcinoma cells to identify genes whose loss confers resistance to SARS-CoV-2 viral 40 

infection. We validate that these genes reduce SARS-CoV-2 infection using multiple orthogonal 41 

cell perturbations (CRISPR knock-out, RNA interference knock-down, and small-molecule 42 

inhibitors). For the top gene hits, we explore potential mechanisms of their antiviral activity 43 

using single-cell transcriptomics, flow cytometry and immunofluorescence. Using single-cell 44 

transcriptomics we identified a group of genes (ATP6AP1, ATP6V1A, NPC1, RAB7A, CCDC22, 45 

and PIK3C3) whose knockout induced shared transcriptional changes in cholesterol biosynthesis 46 

pathway. Perturbation of the cholesterol biosynthesis pathway with the small molecule 47 

amlodipine reduced viral infection. In addition, we show that loss of RAB7A reduces viral entry 48 

by sequestering ACE2 receptors inside cells through altered endosomal trafficking. Prior to this 49 

study, our knowledge of essential host genes for SARS-CoV-2 has been limited to only a handful 50 

of genes, such as ACE2 and cathepsin L: This work provides a quantitative resource of the 51 

impact of each gene’s loss on response to viral infection for every protein-coding gene in the 52 

human genome. 53 

 54 

Results 55 

A high-throughput screen to identify genes required for SARS-CoV-2 infection 56 

To identify key genes required for SARS-CoV-2 infection, we performed a genome-scale loss-57 

of-function screen targeting 19,050 genes in the human genome using the GeCKOv2 CRISPR-58 

Cas9 library (Sanjana et al., 2014). The GeCKOv2 library contains 122,411 CRISPR single-59 

guide RNAs (6  guide RNAs per gene) and has previously been used in CRISPR screens for drug 60 

resistance, immunotherapy, synthetic lethality, mitochondrial disease, and therapeutic discovery 61 

for muscular dystrophy (Erb et al., 2017; Jain et al., 2016; Lek et al., 2020; Patel et al., 2017; 62 
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Shalem et al., 2014). First, we transduced a human alveolar basal epithelial carcinoma cell line 63 

(A549) that constitutively expresses ACE2 (referred to as A549
ACE2

) with an all-in-one lentiviral 64 

vector containing Cas9, guide RNAs from the GeCKOv2 human library, and a puromycin 65 

resistance gene. The transduction was performed at a low multiplicity of infection (MOI ~ 0.2) to 66 

ensure that most cells would receive only one guide RNA construct (Figure 1A). We then 67 

selected with puromycin so that only library-transduced cells remained. We also measured the 68 

survival rate after puromycin selection was complete (3 days) to ensure high coverage of the 69 

122,411 guide RNAs (~1,000 cells per guide RNA). After puromycin selection was complete, 70 

we cultured the cells for 9 days to ensure protein depletion after CRISPR gene targeting. 71 

 72 

Next, we infected the GeCKOv2 pool of A549
ACE2

 cells with SARS-CoV-2 virus (Isolate USA-73 

WA1/ 2020 NR-52281) at either a high (0.3) or a low (0.01) MOI. We verified that SARS-CoV-74 

2 infects A549
ACE2

 cells by staining for the nucleocapsid (N) protein at 24 hours post-infection 75 

(Figure 1B) and, at day 6 post-infection, we measured cell survival for both the high and low 76 

MOI conditions (Figure 1C). As expected, the higher MOI infection resulted in fewer surviving 77 

cells at day 6 post-infection. Next, we extracted genomic DNA and, via amplicon sequencing, we 78 

quantified guide abundance in each biological condition (Figure 1A). To confirm that library 79 

representation was properly maintained, we computed the correlation between the guide 80 

representation in the plasmid library and after puromycin selection (r = 0.84) (Figure S1A). In 81 

contrast, after SARS-CoV-2 infection, there was a much greater degree of guide dropout, as 82 

expected given that SARS-CoV-2 rapidly kills A549
ACE2

 cells without CRISPR perturbations 83 

(Figures 1C, D).  84 

 85 

Using robust-rank aggregation (RRA) on the guide relative enrichments, we computed gene-86 

level scores to identify genes where loss-of-function mutations led to enrichment within the pool 87 

(Figure 1E) (Kolde et al., 2012). We identified approximately 1,000 genes with significant RRA 88 

enrichment (p < 0.05) (Figure S1B). We also used two other previously published methods to 89 

compute gene enrichments (RIGER weighted-sum and second-best rank) and found a high 90 

degree of overlap between enriched genes identified by all three methods (Figure S1C) (Chen et 91 

al., 2015; Luo et al., 2008). We also found a high degree of shared genes across both the low and 92 

high SARS-CoV-2 MOI conditions: When examining the top 50 most enriched genes, we found 93 
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that 27 of them were shared between the low and high MOI conditions (Figure 1F, Table S1), 94 

suggesting that several host genes involved in viral pathogenesis function independently of viral 95 

dose. An independent genome-scale CRISPR screen for SARS-CoV-2 infection also performed 96 

in A549 that overexpress ACE2 but with a different CRISPR library identified similar top-97 

ranked genes (Zhu et al., 2020), highlighting the robustness of our results (Figure S1D).  98 

Enriched genes are involved in multiple aspects of the viral lifecycle and are broadly expressed 99 

Upon close examination of the most enriched genes, we found genes involved in key aspects of 100 

viral entry and replication (Figure 2) (Du et al., 2009). For example, the well-established entry 101 

receptor angiotensin-converting enzyme 2 (ACE2) receptor was ranked as the 8
th

 most-enriched 102 

gene in the low MOI screen and 12
th

 in the high MOI screen (Table S1) (Hoffmann et al., 2020a; 103 

Zhou et al., 2020). Among the top 50 enriched genes, we identified several sets of related genes 104 

that function together in complexes, giving us further confidence in the genome-scale screen 105 

(Figures 2 and 3A). We found genes essential for initial attachment and endocytosis (ACE2, 106 

RAB7A and 4 members of the ARP2/3 complex: ACTR2, ACTR3, ARPC3, and ARPC4), Spike 107 

protein cleavage and viral membrane fusion (CTSL and 13 members of the vacuolar-ATPase 108 

proton pump: ATP6AP1, ATP6AP2, ATP6V0B ATP6V0C, ATP6V0D1, ATP6V1A, ATP6V1B2, 109 

ATP6V1C1, ATP6V1E1, ATP6V1G1, ATP6V1H, TMEM199, and TOR1AIP1), endosome 110 

recycling (4 members of the endosomal protein sorting Retromer complex: VPS26A, VPS29, 111 

VPS35, and SNX27; 4 members of the endosomal trafficking Commander complex: COMMD2, 112 

COMMD3, COMMD3-BMI1, and COMMD4; and 3 members of the PI3K pathway: 113 

PIK3C3/VPS34, WDR81, and ACP5), ER-Golgi trafficking (DPM3, ERMP1, PPID, and 114 

CHST14), and transcriptional modulators (SLTM and SPEN). A consistent theme among the 115 

enriched complexes is endosome function and regulation (V-ATPase proton pump, Retromer, 116 

Commander, Class 3 PI3Ks) (Banerjee and Kane, 2020; Mallam and Marcotte, 2017; McNally 117 

and Cullen, 2018).  Gene Set Enrichment Analysis on the full ranked list of genes identified 118 

significantly-enriched Gene Ontology (GO) categories for endosome processing, transport and 119 

acidification and categories related to cytokinesis and virion attachment (FDR q < 0.1) (Figures 120 

3B and S2A-D) (Table S2) (Subramanian et al., 2005). 121 

 122 
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Although we performed our CRISPR screen in human lung cells, we explored whether the 123 

expression of host genes whose loss reduces SARS-CoV-2 infection were lung-specific or more 124 

broadly expressed. To answer this question, we took the top-ranked genes and examined their 125 

expression across 12 tissues using 4,790 RNA-sequencing datasets from the Genotype-Tissue 126 

Expression (GTEx) v8 database (Figure 3C) (Aguet et al., 2019). Virtually all of the top gene 127 

hits were broadly expressed across all tissues, implying that these mechanisms may function 128 

independent of cell or tissue type. Among the top-ranked genes, only ACE2 showed tissue-129 

specific expression with a particular enrichment in testis, small intestine, kidney and heart 130 

(Figure 3C). 131 

Enriched genes have been suggested to interact with viral proteins and are also essential for 132 

other viral pathogens 133 

Recently, Krogan and colleagues performed an in-depth study of SARS-CoV-2 protein-protein 134 

interaction networks by over-expressing affinity-tagged versions of each protein encoded in the 135 

viral genome followed by tandem mass spectrometry after pulldown (Gordon et al., 2020). Their 136 

study identified 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). 137 

We found that some of the highly-ranked genes from our loss-of-function screen were reported 138 

to have direct PPI with different viral proteins (Figure 3D, Table S2). For example, two highly-139 

ranked subunits of the vacuolar-ATPase proton pump, ATP6AP1 and ATP6V1A, interact with 140 

SARS-CoV-2 non-structural protein 6 (nsp6) and membrane (M) protein, respectively. 141 

ATP6AP1, which was ranked 2
nd

 in the low MOI CRISPR screen and 4
th

 in the high MOI 142 

CRISPR screen, has a very strong PPI interaction with nsp6 (Mass spectrometry Interaction 143 

Statistics [MIST] score = 0.99) (Verschueren et al., 2015). Another key endocytosis protein, 144 

RAB7A, is ranked in the top 50 genes in both CRISPR screens and interacts strongly with non-145 

structural protein 7 (nsp7) (MIST score = 0.97). We also compared the top-ranked genes with 146 

another proteomic study that used proximity labeling in A549 cells over-expressing BioID-147 

tagged viral proteins and found that 22 out of the top 50 low MOI CRISPR screen genes had 148 

direct interactions with viral genes — a significant enrichment over randomly chosen genes (p = 149 

2 x 10
-4

) (Samavarchi-Tehrani et al., 2020). 150 

 151 

Since similar loss-of-function CRISPR screens have been performed to identify host genes 152 

required for other viral pathogens, we next sought to understand whether the hits identified in our 153 
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SARS-CoV-2 screen were shared with those identified in prior screens for Zika virus (ZIKV) 154 

and pandemic H1N1 avian influenza (IAV) (Y. Li et al. 2019, B. Li et al., 2020). We examined 155 

whether top-ranked hits from the ZIKV and IAV screens shared similar genes and similar 156 

functional categories. Overall, there was greater similarity between GO categories of enriched 157 

genes for SARS-CoV-2 and ZIKV (Figure 3E) (Table S2). When examining the top 50 genes 158 

from the SARS-CoV-2 screen, we found several genes that were highly enriched in all 3 viral 159 

pathogen screens (Figure S2E). This group included subunits of the vacuolar-ATPase proton 160 

pump, a well-known family of genes essential for acidification and endosomal processing 161 

(Banerjee and Kane, 2020).  162 

Validation of enriched genes using CRISPR knock-out, RNA interference and small molecule 163 

inhibitors 164 

To test the ability of top-ranked genes to block SARS-CoV-2 viral infection, we picked 30 165 

genes ranked among the top 200 genes in our RRA analysis for independent validation. Each 166 

gene was targeted with 3 guide RNAs distinct from the guides present in the GeCKOv2 genome-167 

wide CRISPR library (Table S3). The guides were synthesized individually and cloned into the 168 

pCC1 lentiviral vector, a modified version of lentiCRISPRv2 with the F+E optimized guide 169 

RNA scaffold (Legut et al., 2020). For a subset of genes, we validated Cas9-mediated loss-of-170 

function by western blot for protein expression (Figure S3A). 171 

 172 

Cas9-perturbed A549
ACE2 

lines were infected with SARS-CoV-2 at an MOI of 0.1 and the 173 

percentage of infected cells was determined by immunofluorescence against the SARS-CoV-2 N 174 

protein at 36 hours post-infection (hpi). For all of the Cas9-perturbed cell lines we observed a 175 

reduced percentage of infected cells with an up to 10-fold reduction in SARS-CoV-2 infection, 176 

compared to the cell lines with non-targeting sgRNAs (Figures 4A, B). Among the genes where 177 

loss provided the greatest protection against SARS-CoV-2 infection were vesicular trafficking 178 

genes like RAB7A, CCDC22 and VPS35, and other genes with well-established roles such as the 179 

ACE2 receptor and the protease cathepsin L (CTSL) (Figure 4B). We found a significant 180 

negative correlation between the percent infection in the arrayed CRISPR validation and the 181 

median fold-change from the genome-wide CRISPR screen (rs = -0.6, p = 5 x 10
-4

) (Figure 4C).  182 

 183 
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For these genes, we performed a full multi-step viral replication growth curve and found that the 184 

CRISPR perturbations decrease viral load across all timepoints (5, 10, 24 and 48 hours) 185 

compared to the non-targeting control (Figure S3B). To test if the identified hits block viral 186 

infection in other cell lines, for 8 genes we generated polyclonal CRISPR knockouts in a human 187 

liver cell line (Huh7.5
ACE2

), which were then infected with SARS-CoV-2 at an MOI of 0.1. 188 

Compared to non-targeting guide RNA controls, we found reduced infection with all 8 genes 189 

tested in the Huh7.5
ACE2

 cells (Figure S3C).  190 

 191 

As an orthogonal gene perturbation method, we also validated a more extensive list of top-192 

ranked genes via siRNA knockdown for 48 hours, followed by infection with SARS-CoV-2 at 193 

MOI of 0.1 (Table S3). Quantification of N-protein immunofluorescent images revealed a 194 

substantial reduction of the percent infected cells (Figure S3D).  195 

 196 

By cross-referencing highly-ranked genes from the CRISPR screen with the Drug Gene 197 

Interaction database (DGIdb), we identified a set of 69 druggable genes (Figure 4D) (Table S4) 198 

(Cotto et al., 2018). We selected 9 genes that were a primary or a secondary target of one of the 199 

26 small molecule inhibitors (Figure 4E). Among the 26 inhibitors, 9 are FDA approved and 7 200 

are in Phase 2 or Phase 3 clinical trials for diverse diseases (Table S4). We pre-treated A549
ACE2

 201 

cells for 2 hours with 10 M of each inhibitor and then infected with SARS-CoV-2 and analyzed 202 

the cells at 36 hpi. As a positive control, we also included remdesivir, which inhibits the viral 203 

RNA polymerase and is the only currently approved treatment for COVID-19 in the United 204 

States (Beigel et al., 2020). We assessed the efficacy of each inhibitor on blocking viral infection 205 

using immunofluorescence and quantitative PCR (qPCR).  206 

 207 

Seven of the 26 inhibitors that we tested (PIK-III, Compound-19, SAR405, autophinib, ALLN, 208 

tamoxifen and ilomastat) resulted in >100-fold reduction of viral load as measured by qPCR 209 

(Figure 4E). Among the best performing inhibitors, 4 of them target the same gene PIK3C3 210 

(also known as VPS34) and 2 inhibitors (autophinib and ALLN) reduced the viral load more than 211 

1000-fold. Similar results were obtained by immunofluorescent imaging of SARS-CoV-2 N 212 

protein (Figure S4A). By testing the top four PIK3C3 inhibitors in combination with CRISPR 213 

targeting of PIK3C3, we found that Compound-19, PIK-III and autophinib were specific while 214 
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SAR405 resulted in greater viral inhibition in PIK3C3 CRISPR-perturbed cells, suggesting some 215 

potential off-target activity for SAR405 (Figure S4B). 216 

 217 

Combinations of some of the top performing inhibitors overall showed an additive effect and 218 

further protected the cells from SARS-CoV-2 infection (Figure S4C). Next we measured cell 219 

viability at 36 hours post inhibitor treatment using flow cytometry. We observed more than 50% 220 

reduction of A549
ACE2

 cell viability with two pan-HDAC inhibitors, panobinostat and pracinostat 221 

(Figure 4F). 222 

Single-cell sequencing identifies cholesterol biosynthesis as a common mechanism underlying 223 

multiple enriched genes from the CRISPR screen 224 

Next, we sought to understand the mechanisms underlying how individual genes identified in our 225 

loss-of-function screen prevent SARS-CoV-2 infection and if host gene loss alters cell 226 

transcriptional programs. For this, we utilized the Expanded CRISPR-compatible Cellular 227 

Indexing of Transcriptomes and Epitopes by sequencing (ECCITE-seq) method to couple pooled 228 

CRISPR perturbations of our top hit genes with a single-cell transcriptomic and proteomic 229 

readout (Mimitou et al., 2019) (Figure 5A) (Table S5). ECCITE-seq is a high-throughput 230 

approach to identify the molecular mechanisms and cellular pathways that drive infection 231 

resistance; the pooled format also provides a more controlled experiment that may be less 232 

susceptible to batch variation. Importantly, cells were infected at low MOI to maximize the 233 

fraction of cells that express a single guide RNA, and therefore can be assigned a specific gene 234 

perturbation. For this, we pooled all individual guide RNA plasmids (3 per target gene) used to 235 

validate our genome-scale screen and 9 non-targeting (NT) sgRNAs (Figure 4B) (Table S3).  236 

 237 

In an initial ECCITE-seq experiment, we identified a median of 152 single cells per target gene. 238 

We observed specific reduction of target gene expression in cells grouped by target gene, 239 

indicating nonsense-mediated decay of transcripts with frameshift indel mutations after CRISPR 240 

modification (Figure S5A). This effect was more pronounced for genes with higher expression. 241 

Using differential gene expression analysis between cells with non-targeting guide RNAs and 242 

cells with targeting guide RNAs, we identified for 11 of the 30 target genes more than 5 243 

differentially expressed genes with a minimal log fold change (see Methods), implying that loss 244 

of these genes results in a detectable transcriptomic shift. It is likely that loss of the other 19 245 
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genes results in more subtle changes in only a few genes; however, even for ‘non-perturbed’ 246 

genes with sufficient basal expression, we detected clear changes in the CRISPR target gene. We 247 

repeated the ECCITE-seq experiment focusing on the 11 genes with detectable transcriptomic 248 

shifts upon target gene perturbation. Combining both replicate experiments, we obtained 18,853 249 

cells that expressed only one guide RNA with a median of 1,388 cells per target gene.  250 

 251 

We found that loss of 6 of the ‘perturbed’ genes — ATP6AP1, ATP6V1A, CCDC22, NPC1, 252 

PIK3C3 and RAB7A, which are part of the endosomal entry pathway — yielded similar gene 253 

expression signatures among upregulated differentially expressed genes (Figures 5B, C and 254 

S5B). These 6 target gene perturbations all led to upregulation of pathways affecting lipid and 255 

cholesterol homeostasis (Figure 5C). Recently, we performed a large survey of >20,000 256 

potential pharmacological treatments for COVID-19 and, for compounds effective at preventing 257 

viral infection, we identified induction of the cholesterol biosynthesis pathway as a potential 258 

mechanism of viral inhibition (Hoagland et al., 2020). Loss-of-function mutations in these 6 259 

genes may function through a similar mechanism (induction of cholesterol synthesis) that 260 

combats the virus-mediated suppression of cholesterol synthesis. Among the significant 261 

differentially expressed genes, we also found 61 genes from the enriched CRISPR screen genes 262 

(n = 20 genes up-regulated; n = 41 genes down-regulated) (Table S5). For example, NPC1, 263 

ATP6V1F and ATP6V1G1 are upregulated in most of the 6 endosomal entry pathway gene-264 

perturbed cells (Figure 5C), suggesting compensatory upregulation of related genes to mitigate 265 

target gene loss. 266 

 267 

To understand how these changes impact lipid production, we measured cholesterol levels in 268 

cells after CRISPR perturbation and found that loss of these genes increases cholesterol by 269 

between 10 and 50%, depending on the perturbation (Figure 5D). To show that increases in 270 

cholesterol leads to increased SARS-CoV-2 resistance, we treated A549
ACE2

 cells with 271 

amlodipine, a calcium-channel antagonist that increases intracellular cholesterol (Mori et al., 272 

1988; Ranganathan et al., 1982). We verified that amlodipine increases cholesterol levels in 273 

A549
ACE2

 cells (Figure S5C) and found that pre-treatment with amlodipine results in reduced 274 

SARS-CoV-2 viral infection, as measured by qPCR for nucleocapsid RNA, plaque formation 275 

and number of viral RNA reads from RNA-sequencing, with only a modest impact on cell 276 
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viability (Figures S5D-G). RNA-sequencing of cells treated with amlodipine shows a similar 277 

differential gene expression profile as seen in our ECCITE-seq with CRISPR perturbations with 278 

the most significant upregulated pathway as cholesterol biosynthesis (Figures S5H, I). 279 

 280 

  281 
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RAB7A knockout results in a reduced cell surface expression and an increased endosomal 282 

accumulation of ACE2 283 

Next, we sought to determine if any of the top-ranked genes regulate cell surface expression of 284 

ACE2, as surface ACE2 is required for SARS-CoV-2 infection (Hoffmann et al., 2020a). To 285 

measure the cell surface expression of ACE2, we performed flow cytometry on A549 wild-type 286 

cells and a panel of A549
ACE2

 CRISPR-perturbed cells. ACE2 expression was detected in 287 

A549
ACE2

, but not in A549 wild type cells, validating the antibody specificity (Figure 6A and 288 

S6). Flow cytometry analysis of the A549
ACE2

 CRISPR-perturbed lines revealed that RAB7A 289 

knock-out cells have a significantly reduced cell surface expression of ACE2 compared to cells 290 

transduced with a non-targeting guide RNA (Figure 6B). Efficient Rab7a protein depletion 291 

across the RAB7A CRISPR-perturbed lines used was confirmed by western blot (Figure S6C). 292 

 293 

Rab7a is a small GTPase that is involved in regulating cellular processes such as vesicular 294 

transport and membrane trafficking (Guerra and Bucci, 2016). We hypothesized that the 295 

observed reduction of ACE2 at the cell surface in RAB7A knock-out cells may be due to 296 

impaired vesicular trafficking and accumulation of ACE2 in the cytoplasm. Immunofluorescence 297 

in the A549
ACE2

 polyclonal cell line revealed that ACE2 is detected in most cells. We also found 298 

that RAB7A knockout leads to an increased accumulation of ACE2 in the cytoplasm and in 299 

vesicle-like hollow structures reminiscent of endo-lysosomes (Figure 6C). We detected these 300 

accumulations in about 35% of RAB7A knockout cells with ACE2 staining, compared to the 301 

control where ACE2 was primarily localized at the plasma membrane and small cytoplasmic 302 

puncta (Figure 6D). Finally, we investigated which cellular compartments accumulate ACE2 in 303 

RAB7A knockout cells. Co-immunofluorescence images showed that in RAB7A knockout cells 304 

ACE2-containing vesicles often colocalize with EEA1, an early endosomal marker and less 305 

frequently with LysoTracker, a lysosome marker (Figure 6E).  306 

 307 

Since ACE2 was overexpressed in our A549
ACE2

 cells, we wondered whether Rab7a loss would 308 

lead to similar cytoplasmic sequestration in cells with endogenous ACE2 expression. Flow 309 

cytometry analysis in Caco-2 colon and Calu-3 lung cells revealed that RAB7A knock-out cells 310 

have significantly reduced cell surface expression of ACE2 compared to cells transduced with a 311 

non-targeting guide RNA (Figure 6F, G). We also found that RAB7A knock-out in Caco-2 cells 312 
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results in larger cytoplasmic ACE2 puncta compared to the control cells, further supporting 313 

cytoplasmic accumulation of ACE2 in the absence of Rab7a (Figure 6H, I). 314 

 315 

Discussion 316 

Given the current COVID-19 global pandemic, there is an urgent need to better understand the 317 

complex relationships between host and virus genetic dependencies. We report a genome-wide 318 

loss-of-function screen in human lung cells that identified host genes required for SARS-CoV-2 319 

viral infection. We selected and validated 30 genes that were ranked among the top 200 genes. 320 

To support the ability of the screen to identify key dependencies, some of the well-known host 321 

genes involved in SARS-CoV-2 Spike protein binding and entry such as the ACE2 receptor and 322 

Cathepsin L were among the top-scoring genes (Hoffmann et al., 2020a). One of the validated 323 

genes (SIGMAR) encodes the Sigma-1 receptor that was recently identified to be modulated by 324 

drugs effective against SARS-CoV-2 in vitro (Gordon et al., 2020). Overall, the top-ranked 325 

genes clustered within several protein complexes including vacuolar ATPases, Retromer and 326 

endosome, Commander, ARP2/3, PI3K and others, highlighting both the critical importance of 327 

multiple genes within each pathway to viral pathogenesis and the diversity of molecular 328 

pathways involved in SARS-CoV-2 infection. 329 

 330 

Using a “minipool” CRISPR library of perturbations targeting top-ranked genes from the 331 

genome-scale CRISPR screen and single-cell transcriptomics, we identified a group of 6 genes 332 

(RAB7A, PIK3C3, NPC1, CCDC22, ATP6V1A, and ATP6AP1) that had a similar transcriptional 333 

signature — upregulation of the cholesterol synthesis pathway. By measuring the cholesterol 334 

levels, we found that CRISPR-driven loss of those 6 genes result in increased cellular 335 

cholesterol. Some of the 6 genes have previously been implicated in regulating low-density 336 

lipoprotein (LDL) cholesterol.  For example, depletion of Rab7a leads to LDL accumulation in 337 

endosomes and NPC1 knockout cells show a reduction of cholesterol at the plasma membrane 338 

and an accumulation in the late endosome/lysosome compartments (Chang et al., 2005; Girard et 339 

al., 2014; Millard et al., 2000; Neufeld et al., 1996).  We have recently, in an independent study, 340 

identified that SARS-CoV-2 infection negatively downregulates the cholesterol synthesis 341 

pathway and that viral infection can be counteracted by drug treatments that upregulate the same 342 
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pathway (Hoagland et al., 2020). It is possible that changes in lipid composition directly impacts 343 

SARS-CoV-2 virion maturation and infectivity, as has been previously shown for Hepatitis C 344 

and Influenza A (Aizaki et al., 2008; Bajimaya et al., 2017). In this study, we showed that 345 

amlodipine, a calcium-channel antagonist, upregulates cholesterol levels and blocks SARS-CoV-346 

2 infection. In addition, recent clinical studies have suggested that patients taking amlodipine or 347 

similar dihydropyridine calcium channel inhibitors have a reduced COVID-19 case fatality rate 348 

(Solaimanzadeh, 2020; Zhang et al., 2020). An important future research direction will be to 349 

further understand the relationship between cholesterol synthesis pathways and SARS-CoV-2. 350 

 351 

Furthermore, we screened a panel of the top-ranked genes and identified that Rab7a regulates 352 

cell surface expression of ACE2, likely by sequestering ACE2 in endosomal vesicles. Rab7a is 353 

involved in vesicular trafficking and its depletion has been shown to sequester other cell 354 

receptors in endosomes (Rush and Ceresa, 2013). Interestingly, RAB7A knock-out cell lines 355 

showed both altered cholesterol biosynthesis and sequestration of ACE2 receptor. Also, previous 356 

proteomics work showed that Rab7a has a strong interaction with viral protein nsp7 (Gordon et 357 

al., 2020). However, there is no nsp7 in the incoming virion, implying a post-entry/post-358 

translational role for Rab7a. Thus, it is possible that loss of Rab7a blocks SARS-CoV-2 359 

pathogenesis via multiple separate pathways, which is supported by the observation that it is the 360 

top-performing gene in our arrayed validation.  361 

 362 

While this study was under review, a few other groups released preprints with loss-of-function 363 

CRISPR screens to identify host factors required for SARS-CoV-2 infection (Heaton et al., 2020; 364 

Wei et al., 2020; Zhu et al., 2020). Notably, only two studies (ours and Zhu et al.) have 365 

substantial overlap (11 and 14 genes among the top 36 genes from our MOI 0.3 and 0.01 screens, 366 

respectively, as shown in Figure S1D and nearly all of the top-ranked gene categories shown in 367 

Figure 2A). Given that these independent screens utilized different CRISPR libraries, the 368 

corroboration by Zhu et al. provide further support for our conclusions. The overlap between 369 

either of these studies with another screen performed using African green monkey cells (Wei et 370 

al.) was limited to ACE2 and CTSL, two genes with established roles in viral entry. The 371 

differences in the overlap among the top-ranked genes might be due to technical aspects (such as 372 

different CRISPR libraries or variations in guide representation) or biological differences (such 373 
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as different cell types or different host species). An exciting avenue for future study would be to 374 

investigate if SARS-CoV-2 perhaps utilizes multiple cell type-specific genetic circuits. 375 

 376 

A key element in our study was harnessing genome-scale loss-of-function to develop more 377 

refined therapeutic hypothesis. Our study suggests that PIK3C3 is a promising drug target: Four 378 

out of the seven PIK3C3 inhibitors resulted in more than 100-fold reduction of SARS-CoV-2 379 

viral load (SAR405, Compound-19, PIK-III, and Autophinib). Using a PIK3C3 polyclonal 380 

knockout A549
ACE2

 cell line, we found that among the top four PIK3C3 inhibitors, SAR405 may 381 

have some off-target effects (Figure S4B). Considering that our polyclonal knockout line likely 382 

has some residual PIK3C3, future work will be required to test the inhibitor specificity using a 383 

PIK3C3 monoclonal knockout cell line. Another drug that shows a substantial reduction in 384 

SARS-CoV-2 viral load is tamoxifen. Tamoxifen is an FDA-approved drug given as prophylaxis 385 

to patients at risk of breast cancer and works via modulation of the estrogen receptor. Tamoxifen 386 

was included in our study as it targets protein kinase C as a secondary target (O’Brian et al., 387 

1985). This mechanism is further supported by the observation that A549 cells have undetectable 388 

transcript levels of estrogen receptor 1 (Human Protein Atlas) (Uhlen et al., 2010). Considering 389 

that tamoxifen is typically given to patients for years as a cancer therapy and prophylactic 390 

(Marchant, 1976), it would be interesting to investigate if patients taking tamoxifen have a 391 

reduced risk of SARS-CoV-2 infection and/or display less severe symptoms post-infection.   392 

 393 

Finally, many approaches for therapeutic discovery have focused on large-scale screens of 394 

compound libraries. Even when promising therapeutic candidates are identified, it can be 395 

challenging to understand the mechanisms responsible for reducing viral pathogenesis. Our 396 

forward-genetics approach allows us to first identify key host genes, which can then be targeted 397 

through a diversity of methods such as small-molecule inhibitors, blocking antibodies or gene 398 

knockdown. A key advantage of this approach is that the mechanism of action for any 399 

therapeutic is well-established from the outset.  400 

 401 

Taken together, our integrative study identifies essential host genes in SARS-CoV-2 viral 402 

pathogenesis and, through a broad range of analytic and experimental approaches, validates their 403 

central role in infection. We also identify potential mechanisms underlying top-ranked genes, 404 
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including cholesterol synthesis and endosomal function. In addition to guiding new therapeutic 405 

targets to help end this pandemic, our study provides a framework for harnessing massively-406 

parallel genome editing to understand disease genetics and mechanisms. 407 

 408 

Limitations of Study 409 

Our study identified host factors required for SARS-CoV-2 infection in human A549 cells that 410 

overexpress ACE2. Future work will be needed to explore limitations of our study. (1) 411 

Considering the ACE2 overexpression in our screen, it will be interesting to screen human cells 412 

expressing endogenous ACE2, which may potentially identify transcriptional regulators of 413 

ACE2. (2) The A549 cell line used in our CRISPR screen is a lung adenocarcinoma cell line. 414 

Given that various organs are affected by SARS-CoV-2, it will be helpful to understand whether 415 

there are tissue-specific host factors. (3) While we show through multiple, distinct genetic 416 

perturbations that upregulation of the cholesterol biosynthesis pathway and increase in cellular 417 

cholesterol blocks SARS-CoV-2, the precise mechanisms of how changes in cholesterol disrupt 418 

viral infection remain to be elucidated. (4) Recent genome-wide association studies have 419 

uncovered human genetic variants associated with COVID-19 risk and severity. Since the 420 

majority of such variants are in noncoding regions, integrative analysis of genome-wide CRISPR 421 

screens may help pinpoint the causal genes through which these variants function. 422 
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Main figure titles and legends 

 

 
Figure 1. A genome-scale CRISPR loss-of-function screen to identify genes that prevent SARS-

CoV-2 infection of human alveolar epithelial carcinoma cells.  

A) Overview of the genome-scale loss-of-function screen for host factors in human A549
ACE2

 cells 

requires for SARS-CoV-2 infection. B) Immunofluorescence of SARS-CoV-2 nucleocapsid (N) protein 

and DAPI labeling of human A549
ACE2

 cells at 24 hours post-infection. C) Percent survival of human 

A549
ACE2

 cells transduced with the GeCKOv2 library with the indicated SARS-CoV-2 viral amount 

(MOI) at 6 days post-infection. D) Scatterplot of guide RNA read counts from A549
ACE2

 cells at 6 days 

post-infection with SARS-CoV-2 (MOI ~ 0.01) versus cells prior to infection. Read counts are 

normalized log2 reads. E) Volcano plot of median fold-change of guide RNAs for each gene and log10 

Robust Rank Aggregation (RRA) p-values. All genes with |fold-change| > 4 and RRA p < 10
-3

 are 

labeled. F) Overlap of top 50 ranked genes between the MOI 0.01 and MOI 0.3 screen. 

 

 

Figure 2. Top-ranked genes from the CRISPR screen are involved in key elements of the SARS-

CoV-2 viral lifecycle.  

Schematic of SARS-CoV-2 docking, entry, RNA genome release and transcription, and virion replication, 

assembly and release with top-ranked host genes from the CRISPR screen highlighted in red. All genes 

shown are ranked in the top 50 genes (top ~0.25% of library) in the low MOI CRISPR screen using 

Robust Rank Aggregation. Adapted from Du et al. (2009). 

 

 

Figure 3. Enriched genes cluster into related pathways, are expressed broadly, interact directly 

with viral proteins, and are also involved in viral pathogenesis of pandemic flu and Zika virus.  

A) Classification of genes shown in Figure 2 (top-ranked ~0.25% of the GeCKOv2 library) into specific 

complexes. B) Gene set enrichment analysis normalized enrichment scores for all significant (FDR q < 

0.1) Gene Ontology (GO) biological processes. C) Expression of top-ranked genes (same as in A) across 

the indicated human tissues from GTEx v8. Gene expression color scale is transcripts per million (TPM). 

D) RRA fold-change for the low MOI CRISPR screen for the high-confidence protein-protein interaction 

with the maximum fold-change for each viral gene from the Gordon et al. mass spectrometry dataset 

(2020). E) Clustering of top-ranked GO biological processes for CRISPR screens for Zika virus ZIKV (Y. 

Li et al., 2019), H1N1 pandemic avian influenza IAV (B. Li et al., 2020), and SARS-CoV-2 (this study). 
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Figure 4. Arrayed validation of genome-scale SARS-CoV-2 screen and identification of druggable 

gene targets.  

A) Representative immunofluorescence images of A549
ACE2

 knockout lines infected with SARS-CoV-2 

at MOI of 0.1 and fixed 36 hours post-infection (hpi). SARS-CoV-2 N protein is shown in red and DAPI 

in blue. B) Quantification of SARS-CoV-2 infected A549
ACE2

 knockout lines immuno-stained with N 

protein as shown in A. Each gene was targeted with 3 different guide RNAs represented as diamond 

symbols (n = 3 biological replicates, error bars indicate s.e.m.). C) Correlation of log2 median fold change 

from the genome-scale CRISPR screen (low MOI) and percent of infected cells after individual (arrayed) 

gene perturbation shown in B. D) Druggable genes found in the Drug Gene Interaction database (DGIdb) 

among highly-ranked genes from the genome-scale CRISPR screen (ranked by RRA p-value). E) 

Quantitative PCR (qPCR) of SARS-CoV-2 viral load present in A549
ACE2

 cells pretreated for 2 hours 

with the indicated small molecule inhibitors at 10M and then infected with SARS-CoV-2 at MOI of 0.1. 

The qPCR was performed at 36 hours post-infection (hpi). Red bars indicate inhibitors that yield a greater 

than 100-fold reduction in viral load. Bars with hatch marks indicate an unreliable viral load measurement 

due to a large reduction in cell viability (see panel F). Inhibitors were maintained at the same 

concentration throughout the experiment (n = 6 biological replicates, error bars indicate s.e.m.). F) 

Percent of A549
ACE2

 viable cells following inhibitor treatments at 10 M for 36 hpi determined using 

LIVE/DEAD stain and flow cytometry. Bars with red hatch marks indicate that inhibitor treatment had a 

large impact on viability (< 90% viability). Significance testing for panels B, E, and F was performed via 

a one-way ANOVA with false-discovery rate-corrected follow up tests; for clarity of presentation, all 

significance testing can be found in Table S6. 

 

 

Figure 5. Single-cell transcriptomics (ECCITE-seq) identifies shared target gene signatures for 

lipid and cholesterol regulation.  

A) Schematic of pooled CRISPR perturbations with Expanded CRISPR-compatible Cellular Indexing of 

Transcriptomes and Epitopes by sequencing (ECCITE-seq). Adapted from Mimitou et al. (2019). B) 

Single-cell mRNA expression heatmap showing the 100 most differentially upregulated genes (adjusted 

p-value < 0.01) for 200 randomized cells per selected target gene perturbation (for clarity, CCDC22, 

PIK3C3, RAB7, and TMEM165 perturbations are not shown). Labeled genes are either a top-ranked gene 

from the genome-wide CRISPR screens (red) or among the top 5 differentially-expressed genes for a 

gene perturbation (black). C) Heatmap summarizing Gene Set Enrichment Analysis results for genes 

upregulated in any of the indicated target gene-perturbed cells (all genes with p-value < 0.01 and with a 

limit to the 300 most differentially-expressed genes; all enriched pathways with adjusted p-value < 10
-13

). 
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D) Cholesterol quantification in gene-perturbed cells (with the indicated guide RNAs), normalized to total 

protein. 

 

Figure 6. RAB7A loss results in a reduced cell surface expression and an increased endosomal 

accumulation of ACE2.  

A) Representative histograms of flow cytometry analysis to determine cell surface expression of ACE2 on 

A549 cell lines (A549 wild type (WT), A549
ACE2

, and ACE2 with Cas9 and non-targeting (NT) or 

RAB7A-targeting guide RNAs). The dashed line indicates the gate between the ACE2 negative and 

positive cells. B) Fraction of ACE2+ cells (using gating shown in panel A). ACE2 expression level was 

normalized across all samples to the A549
ACE2

 cells transduced with non-targeting (NT) guides (n = 2-3 

gRNA-transduced lines per gene, error bars are s.e.m.). C) Representative images of immunofluorescence 

staining of ACE2 on A549
ACE2

 transduced with a non-targeting (NT) or a RAB7A-targeting guide. In NT 

cells, ACE2 localizes at the cell membrane and in the cytoplasm, while in RAB7A-targeted cells, ACE2 

shows a distinct pattern of localization to vesicles. D) Percent of cells with ACE2 accumulation in 

vesicles in NT and RAB7A-transduced A549
ACE2

 cells (n = 2 biological replicates, error bars are s.e.m.). 

E) Representative images of immunofluorescence co-stained for ACE2, EEA1 and Lysotracker in 

A549
ACE2

 cells with a CRISPR guide RNA targeting RAB7A. ACE2 shows a distinct colocalization with 

EEA1 (an early endosome marker) and a less frequent colocalization with Lysotracker (a lysosomal 

maker). F) Representative histograms of flow cytometry analysis to determine cell surface expression in 

Calu-3 cells. The dashed line indicates the gate between the ACE2 negative and positive cells. G) 

Fraction of ACE2+ cells (using gating shown in panel F). ACE2 expression level was normalized across 

all samples to the Calu-3 cells transduced with a non-targeting (NT) guide (n = 3 biological replicates, 

error bars are s.e.m.). H) Representative images of immunofluorescence staining of ACE2 on Caco-2 

cells transduced with a NT or a RAB7A-targeting guide. In NT cells, ACE2 localizes at the cell 

membrane and in the cytoplasm, while in RAB7A-targeted cells, ACE2 shows a distinct pattern of 

localization to vesicles. I) Mean area of ACE2 foci in Caco-2 cells transduced with a NT or a RAB7A-

targeting guide (n = 4 biological replicates, 80-105 cells per replicate were scored, error bars are s.e.m.). 

Significance testing for panels B and G was performed with a one-way ANOVA (B: F = 9.8, p < 10
-4

; G: 

Calu-3: F = 378, p < 10
-4

, Caco-2: F = 222, p < 10
-4

) with false-discovery rate-corrected post-hoc tests. 

Significance testing for panels D and I was performed with an unpaired t-test. For all panels, * indicates p 

 0.05, ** indicates p  0.01, *** indicates p  0.001, and **** indicates p  0.0001. 
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Supplemental figure titles and legends 
 

Supplementary Figure 1. Genome-wide loss-of-function CRISPR screen enriched gene 

identification, Related to Figure 1. 

A) Scatterplot of guide RNA read counts from A549
ACE2

 cells at 3 days post-transduction with the 

GeCKOv2 library versus read counts from the library plasmid. Read counts are normalized log2 reads. B) 

RRA p-value distribution for all genes in the GeCKOv2 library. C) Overlap of top-ranked (top 500) genes 

between 3 different analysis methods (RRA, RIGER, and SBR). 142 genes are found by all 3 methods. D) 

Comparison of top-ranked genes between different genome-scale CRISPR screens for SARS-CoV-2 

infection. 

 

Supplementary Figure 2. Gene set enrichment and overlap of top-ranked genes with other viral 

infections, Related to Figures 2 and 3.  

A) – D) Four of the significant (FDR < 0.1) top-ranked GO biological process terms and the fold-change 

ranks of their genes in the SARS-CoV-2 low MOI CRISPR screen. E) Normalized gene ranks of the top 

50 genes from the SARS-CoV-2 low MOI CRISPR screen and genome-scale CRISPR screens for Zika 

virus (ZIKV) and H1N1 avian influenza (IAV). 

 

Supplementary Figure 3. Validation of top-ranked genes using CRISPR perturbations and RNA 

interference, Related to Figure 4.  

A) Western blot analysis of RAB7A, CCDC22, ATP6V1A, and ACE2 after transduction of A549
ACE2

 

with the indicated CRISPR guide RNA and selection with puromycin for 7 days. For validation, we 

designed 3 independent guide RNAs per gene (i.e. distinct guide RNAs from those in the GeCKOv2 

library). Beta tubulin was used as loading control. B) Quantitative PCR (qPCR) of SARS-CoV-2 viral 

load present in A549
ACE2

 CRISPR-perturbed cells infected with SARS-CoV-2 at MOI of 0.1. The qPCR 

was performed on cells collected at the indicated time (hours) post-infection (hpi) (n = 6 biological 

replicates, error bars indicate s.e.m.). C) Western blot analysis of RAB7A and ACE2 after transduction of 

Huh7.5
ACE2

 with the indicated CRISPR guide RNA and selection with puromycin for 7 days. For 

validation, we designed 3 independent guide RNAs per gene (i.e. distinct guide RNAs from those in the 

GeCKOv2 library). Beta tubulin was used as loading control.  D) qPCR of SARS-CoV-2 viral load 

present in Huh7.5
ACE2

 CRISPR-perturbed cells infected with SARS-CoV-2 at MOI of 0.1. The qPCR was 

performed on cells collected and fixed at 36 h.p.i (n = 3 guide RNAs with 6 biological replicates each, 

error bars indicate s.e.m.). E) Immunofluorescence quantification of SARS-CoV-2 N protein at 36 hours 

post-infection (hpi) at MOI 0.1 in A549
ACE2

 cells pretreated with siRNA pools for 48 hours (n = 3 

technical replicates, error bars represent s.e.m., NT indicates non-targeting controls).  
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Supplementary Figure 4. Perturbations of enriched CRISPR screen genes with small-molecule 

inhibitors, Related to Figure 4.  

A) Immunofluorescence quantification of SARS-CoV-2 N protein at 36 hpi (MOI 0.1) in A549
ACE2

 cells 

pretreated for 2 hours with 10 M of the indicated inhibitors (n = 3 biological replicates, error bars 

represent s.e.m.) B) Quantitative PCR (qPCR) of SARS-CoV-2 viral load present in A549
ACE2

 cells 

(CRISPR-perturbed with either non-targeting or PIK3C3-targeting guide RNAs) pretreated for 2 hours 

with the indicated PIK3C3 molecule inhibitors at 10M and then infected with SARS-CoV-2 at MOI of 

0.1. The qPCR was performed at 36 hours post-infection (hpi). Inhibitors were maintained at the same 

concentration throughout the experiment (n = 6 biological replicates, error bars indicate s.e.m.).  C) 

Immunofluorescence quantification of SARS-CoV-2 N protein at 36 hpi (MOI 0.1) in A549
ACE2

 cells 

pretreated with a combination of indicated inhibitors at 10 M each for 2 hours (n = 3 biological 

replicates, error bars represent s.e.m.).  

 

Supplementary Figure 5. ECCITE-seq identifies cholesterol gene signature shared across multiple 

top-ranked genes, Related to Figure 5.  

A) Stacked violin plot of 11 genes shared in both ECCITE-seq experiments. Single-cells are grouped by 

unique guide RNA target gene label of cells with a single detected guide RNA. Target gene expression is 

highlighted in red. B) Heatmap of Gene Set Enrichment Analysis results for genes downregulated in any 

of the indicated target gene perturbed cells. C) Cholesterol (normalized by total protein) in A549
ACE2

 cells 

treated with amlodipine or vehicle (DMSO) for 24 hours. D) Quantitative PCR (qPCR) of SARS-CoV-2 

viral load present in A549
ACE2

 cells treated with amlodipine or DMSO for 24 hours and then infected with 

SARS-CoV-2 at MOI of 0.1. The qPCR was performed on cells collected at the indicated time (hours) 

post-infection (hpi) (n = 3 biological replicates, error bars indicate s.e.m.).  E) Plaque assays of SARS-

CoV-2 viral load present in A549
ACE2

 cells treated with amlodipine or DMSO for 24 hours and then 

infected with SARS-CoV-2 using logarithmically diluted supernatants. (n = 3 biological replicates, error 

bars indicate s.e.m.).  F) Number of reads mapping to the indicated portion of the viral genome in 

A549
ACE2

 cells treated with amlodipine or DMSO. A representative sample is shown for each treatment (n 

= 3 biological replicate sequencing libraries). G) Cell viability by Trypan Blue exclusion in A549
ACE2

 

cells treated with amlodipine or DMSO for 24 hours (n = 3 biological replicates, error bars indicate 

s.e.m.). H) Distance matrix of RNA-sequencing from A549
ACE2

 cells treated with amlodipine or DMSO 

for 24 hours and then infected at MOI 0.1 or mock infection (n = 3 biological replicate sequencing 

libraries for each treatment-infection group). Read counts were processed with the DESeq2 regularized-

log transform before computing distances. I) k-means clustering (k = 3) of the top 500 most variable 
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genes across all 4 conditions (n = 3 biological replicate sequencing libraries for each treatment-infection 

group). For each cluster, we label the most enriched pathway (lowest p-value) and, for the genes in that 

pathway, we label the top 5 most variable genes. No significantly enriched pathways were found for 

Cluster 3.  

 

Supplementary Figure 6. Flow cytometry for cell surface ACE2 expression and protein analysis of 

RAB7A protein after CRISPR targeting, Related to Figure 6. 

A) and B) Flow cytometry gating strategy to quantify cell surface expression of ACE2. A) Live cells were 

first gated by the forward and side scatter area, then doublets were excluded by gating with the forward 

scatter area and width. Viable cells were selected by gating on side scatter area and LIVE/DEAD violet. 

B) Gating strategy to determine ACE2+ cells. The gate was position such that <3% of A549 wild type and 

>85% of A549
ACE2

 cells were ACE2 positive. The same gating strategy was applied to all samples. C) 

Western blot on A549
ACE2

 cells perturbed with non-targeting (NT) or RAB7A-targeting guide RNAs and 

probed with a RAB7A antibody. GAPDH was used as loading control. 
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STAR Methods 

 

Resource Availability 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 

the Lead Contact, Neville Sanjana (neville@sanjanalab.org). 

Materials Availability 

The pHR-PGK-ACE2 vector generated in this study is available through Addgene (161612).  

Data and Code Availability 

CRISPR screen, single cell RNA-sequencing/ECCITE-seq and bulk RNA-sequencing datasets are 

available on the GEO repository with accession numbers GSE158298, GSE159519 and GSE159522, 

respectively. Additional Supplemental Items are available from Mendeley Data at 

http://dx.doi.org/10.17632/km23bwyny6.1 

 

Experimental Models and Subject Details 

Mammalian cell lines and culture conditions 

Human alveolar basal epithelial carcinoma cells (A549, ATCC CCL-185), human hepatocellular 

carcinoma (Huh7.5, a kind gift from C. Rice), human colorectal carcinoma (Caco-2, ATCC HTB-37), 

lung adenocarcinoma (Calu-3, ATCC HTB-55), monkey kidney epithelial cells (Vero E6, ATCC CRL-

1586) and human embryonic kidney cells HEK293FT (Thermo) were used in our study. HEK293FT, 

Huh7.5, and Caco-2 cells were maintained at 37
o
C and 5% CO2 in D10 media, which consists of DMEM 

(Caisson Labs) with 10% Serum Plus II Medium Supplement (Sigma-Aldrich). Calu-3 and Vero E6 cells 

were maintained in EMEM (ATCC) media with 10% Serum Plus II Medium Supplement (Sigma-

Aldrich) .  

Viral strains 

SARS-related coronavirus 2 (SARS-CoV-2), isolate USA-WA1/2020 (NR-52281), used in the study 

(Blanco-Melo et al., 2020; Daniloski et al., 2020). SARS-CoV-2 was grown in Vero E6 cells in DMEM 

supplemented with 2% FBS, 4.5 g/L D-glucose, 4 mM L-glutamine, 10 mM non-essential amino acids, 1 

mM sodium pyruvate and 10 mM HEPES. Plaque assays were used to determine infectious titers of 

SARS-CoV-2 by infection of Vero E6 cells in Minimum Essential Media supplemented with 2% FBS, 4 

mM L-glutamine, 0.2% BSA, 10 mM HEPES and 0.12% NaHCO3 and 0.7% agar.  

mailto:neville@sanjanalab.org


 

 26 

 

Method Details 

Generation of A549
ACE2

 line 

To generate ACE2 expressing cells, the human ACE2 coding sequence was amplified and cloned into the 

BamHI site of the lentiviral vector pHR-PGK (Addgene 79120). We generated lentiviral particles (as 

described below) and transduced 5x10
4
 A549 cells plated in a 12-well plate in the presence of polybrene 

(8μg/ml). We confirmed hACE2 expression by western blot analysis (Thermo MA5-32307). 

Lentiviral production, transduction and SARS-CoV-2 infection 

The Human GeCKOv2 A and B libraries (Addgene 1000000048) were used for genome-scale CRISPR 

knockout screens (Sanjana et al., 2014). We mixed equal amount of the A and B library plasmids to target 

each gene with 6 guide RNAs. Briefly, 225cm
2
 flasks of 80% confluent HEK293FT cells (Thermo) were 

transfected with 25 g GeCKOv2 plasmid, 14 g pMD2.G and 20 g psPAX2 mixed in 2.5 mL 

OptiMEM (Thermo) and 175 L Polyethylenimine (1 mg/ml) (Polysciences). After 6 hours, media was 

changed to D10 media with 1 % bovine serum albumin (Sigma) added to improve virus stability. After 60 

hours, viral supernatants were harvested and centrifuged at 3,000 rpm at 4 °C for 10 min to pellet cell 

debris debris and filtered using 45 m PVDF filters (CellTreat). The supernatant was then 

ultracentrifuged for 2 hours at 100,000g (Sorvall Lynx 6000) and the pellet resuspended overnight at 4 °C 

in PBS with 1% BSA. 

Following lentiviral titration, 330 million A549
ACE2

 expressing cells were transduced at MOI of 0.5. Cells 

were selected with 2 g/uL puromycin (Thermo) for 12 days to ensure proper selection. Throughout the 

experiment the representation was monitored such that each guide RNA is represented by at least 1000 

cells (~125 M cells).  

We infected GeCKOv2-transduced cells (~1000x representation) with SARS-CoV-2 isolate USA-

WA1/2020 (NR-52281) at either MOI of 0.01 (low MOI) and 0.3 (high MOI). Surviving cells were 

collected on day 6 post-infection for genomic DNA isolation.  

Genomic DNA isolation, guide RNA amplification and quantification 

We used a two-step PCR protocol (PCR1 and PCR2) to amplify the guide RNA cassette for Illumina 

sequencing from genomic DNA (gDNA). The gDNA was extracted from CRISPR screen cells using the 

following protocol (Chen et al., 2015): Per 100 million cells, 12 mL of NK Lysis Buffer (50 mM Tris, 50 

mM EDTA, 1% SDS, pH 8) were used for cell lysis. Once cells were resuspended, 60 µL of 20 mg/ml 

Proteinase K (Qiagen) was added and the sample was incubated at 55ºC overnight. The next day, 60 µL 
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of 20 µg/mL RNase A (Qiagen) was added, mixed, and samples were incubated at 37ºC for 30 min. Then 

4 mL of pre-chilled 7.5 M ammonium acetate was added, samples were vortexed and spun at 4,000g for 

10 min. The supernatant was placed in a new tube, mixed well with 12 mL isopropanol and spun at 

4,000g for 10 min. DNA pellets were washed with 12 mL of 70% ethanol, spun, dried and pellets were 

resuspended with 0.2x TE buffer (Sigma). 

For the first PCR reaction, we used all gDNA available for each sample. We performed the PCR1 using 

Taq-B polymerase (Enzymatics) and used multiple reactions where each reaction contained up to 10 g 

gDNA per 100 L PCR reaction. PCR1 products for each sample were pooled and used for amplification 

with barcoded PCR2 primers. For each sample, we performed 12 PCR2 reactions (using 5 µL of the 

pooled PCR1 product per PCR2 reaction) with Q5 polymerase (NEB). PCR2 products were pooled and 

then normalized within each biological sample before combining uniquely-barcoded separate biological 

samples. The pooled product was then gel-purified from a 2% E-gel EX (Life Technologies) using the 

QiaQuick gel extraction kit (Qiagen). The purified, pooled library was then quantified with Tapestation 

4200 (Agilent Technologies). PCR products were run on a 2% agarose gel and the correct size band was 

extracted. Sequencing was performed on the NextSeq 550 instrument using the HighOutput Mode v2 with 

75 bp paired-end reads (Illumina). All PCR1 and PCR2 primer sequences, including full barcodes, are 

listed on the GeCKO website (http://genome-engineering.org/gecko/). 

Sequencing reads were demultiplexed upon sequencing based on Illumina i7 barcodes present in PCR2 

reverse primers using Illumina BaseSpace. We performed adaptor trimming by treating the hU6 promoter 

sequence as a 5’ adapter, using cutadapt v1.13 [-e 0.2 -O 5 -m 20 -g 

TCTTGTGGAAAGGACGAAACACCG]. Processed guide RNA sequences were aligned to the GeCKOv2 

reference allowing for up to 1 mismatch using bowtie v1.1.2  [-a --best --strata -v 1 –

norc] with alignment rates of 81% to 86%. 

Computational analyses of genome-scale CRISPR screens 

Guide RNA counts were processed using the MaGeCK pipeline with an output of RRA p-values and gene 

ranks (Chen et al., 2018). We separately ranked genes using the RIGER (weighted-sum) and second-best 

rank methods (Chen et al., 2015; Luo et al., 2008). Gene Set Enrichment Analyses were performed using 

the fgsea package with Gene Ontology for biological processes (c5.bp.v7.1.symbols) 

(Korotkevich et al., 2019). GTEx v8 tissue specific enrichment was performed using the Multi Gene 

Query function available on the GTEx website:  https://www.gtexportal.org/home/multiGeneQueryPage 

(accessed August 1st, 2020) (Aguet et al., 2019). GO enrichments for SARS-CoV-2, ZIKV, and IAV 

CRISPR screens were performed using GOrilla to find all significant enrichments (FDR p-value < 10-

https://www.gtexportal.org/home/multiGeneQueryPage
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3) (Eden et al., 2009). FDR p-values were log10-transformed and normalized to create the heatmap shown 

in Figure 3E. 

Generation of gene-perturbed human
 
cell lines and SARS-CoV-2 infection 

For validation by CRISPR knock-out (using 3 independent guide RNAs per gene), we selected genes that 

were highly-ranked (either in the low or high MOI screen or both) or genes that had not previously been 

implicated in viral pathogenesis or immune signaling. For each gene of interest, 3 guide RNAs were 

designed using GUIDES software and were subsequently cloned into an all-in-one vector with an 

optimized Cas9 scaffold (pCC_01, Addgene 139086) containing Cas9, a guide RNA cassette and a puro 

resistant cassette (Legut et al., 2020; Meier et al., 2017). Following sequence confirmation by Sanger 

sequencing, lentivirus was produced individually for each plasmid and the target cells were transduced in 

presence of polybrene (10 g/mL, Santa Cruz). Gene-perturbed A549
ACE2

, Huh7.5
ACE2

, Calu-3 and Caco-

2 cells were selected for at least 10 days with 2 g/mL (A549
ACE2

, Calu-3), 3 g/mL (Caco-2) or 5 g/mL 

(Huh7.5
ACE2

) puromycin (Thermo). To determine the SARS-CoV-2 infection susceptibility of gene-

perturbed lines, 10,000 cells were plated per well of 96-well plates. After 24 hours, the cells were infected 

with SARS-CoV-2 at MOI of 0.1. At 36 hours post-infection, the cells were either fixed and processed for 

immunofluorescence or cellular RNA was harvested for qRT-PCR analyses. For the multistep growth 

curves, cells were infected at an MOI of 0.1, and total RNA was harvested from infected cells at indicated 

times. RNA was processed for qRT-PCR as described above. All infections with SARS-CoV-2 were 

performed with at least 3 biological replicates. 

Immunofluorescence of nucleocapsid (N) protein 

Cells were fixed with 5% formaldehyde and immunostained for nucleocapsid (N) protein and visualized 

with a secondary antibody labeled with AlexaFlour-568 (Thermo). SARS-CoV-2 nucleocapsid (N) 

antibody (clone 1C7C7) was obtained from the Center for Therapeutic Antibody Discovery at the Icahn 

School of Medicine at Mount Sinai. Nuclei were stained with DAPI. Full wells were imaged and 

quantified for SARS-CoV-2 infected cells using a Celigo imaging cytometer (Nexcelom Biosciences). All 

infections with SARS-CoV-2 were performed with 3 biological replicates. Representative images from 

the top gene knockout hits were acquired using the EVOS M5000 Imaging System (Thermo).  

Identification of druggable genes and drug treatments 

To identify druggable genes among the top CRISPR screen hits, we cross-referenced highly-ranked genes 

from the RRA analysis with the data table containing drugs and their gene targets was obtained from 

Drug Gene Interaction database (DGIdb, retrieved on June 3, 2020) as well as manual literature search 
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(Cotto et al., 2018). Inhibitors that target the genes of interest (and remdesivir) was obtained from 

SelleckChem and MedChemExpress. The catalog number and vendor information is available in the Key 

Resource section. Amlodipine was obtained from Sigma (A5605). 

To test drug efficacy in reducing SARS-CoV-2 infection, 10,000 A549
ACE2

 cells were seeded per well of a 

96-well plate. Cells were treated with inhibitors at 10 M for two hours before infection and inhibitors 

were maintained throughout the course of infection. Cells were infected with SARS-CoV-2 at MOI of 0.1 

for 36 hours and the cells were collected for analysis via qRT-PCR or processed for immunofluorescence 

(N protein and quantified by Celigo). For Figure 4E, the remdesivir data was collected in an independent 

experiment. 

Cell viability assays 

Cell viability following drug treatments was performed the same way as described above. Thirty-six 

hours post drug treatment the cells were collected and stained with LIVE-DEAD Violet (Thermo). Cell 

acquisition was performed using a Sony SH800S cell sorter with a 100 m sorting chip. We used the 

following gating strategy: 1) We excluded the cell debris based on the forward and reverse scatter; 2) 

Doublets were excluded by plotting FSC height vs FCS area, 3) Dead cells were quantified using live-

dead violet stain. For all samples, we recorded at least 5,000 cells that pass the gating criteria described 

above. Flow cytometry analyses were performed using FlowJo v10. Cell viability for A549-ACE2 treated 

with DMSO or 10µM amlodipine was performed 24 hours post treatment using Trypan Blue (Thermo 

Fisher) and automated cell counting (Nexcelom AutoT4).  

Quantitative reverse-transcription PCR (qRT-PCR) of viral RNA 

RNA was extracted from cells grown in 96-well plates by using the RNeasy 96 Kit (Qiagen) per the 

manufacturer’s instructions. RNA was reverse-transcribed and PCR amplified using SYBR Fast One-step 

Universal qRT-PCR Kit (KAPA/Roche). For amlodipine experiments, RNA was extracted using TRIzol 

Reagent (Invitrogen) and purified with the Direct-zol RNA Miniprep kit (Zymo Research) as per the 

manufacturer’s instructions (including the optional DNase I treatment). For amlodipine experiments, the 

RNA was reverse-transcribed using SuperScript Reverse Transcriptase II (Thermo Fisher) and oligo(dT) 

primers. The cDNA was diluted 1:20 before qRT-PCR was performed using SYBR Fast qPCR 

(KAPA/Roche). SARS-CoV-2 replication was assessed by using primers specific to the N mRNA 

(Forward 5’-CTCTTGTAGATCTGTTCTCTAAACGAAC-3’; Reverse 5’-GGTCCACCAAACGTAATGCG-3’). 

SARS-CoV-2 N mRNA levels were normalized to beta tubulin (Forward 5’-

GCCTGGACCACAAGTTTGAC-3; Reverse 5’-TGAAATTCTGGGAGCATGAC-3’). Reactions were ran and 

analyzed on a Lightcycler 480 II Instrument (Roche). Relative quantification was calculated by 
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comparing the cycle threshold (Ct) values using Ct. Ct values of subgenomic nucleocapsid transcript 

were normalized to Ct values of alpha-tubulin, and those values were normalized to viral transcript levels 

of DMSO-treated or non-targeting guide RNA-transduced control samples, and displayed as fold-

reduction in viral transcript. Significance was determined using a one-way ANOVA with post-hoc tests or 

a two-tailed unpaired Student’s t-test, as appropriate. 

siRNA transfections and SARS-CoV-2 infection 

All of the siRNAs were ordered from Dharmacon and their catalog number can be found in the Key 

Resource Table. To knockdown individual genes, 10,000 A549
ACE2

 cells were seeded in 96-well plates 

and transfected with siRNAs using Lipofectamine RNAiMAX (Thermo) following the manufacturer’s 

protocol. Forty-eight hours later, the cells were infected with SARS-CoV-2 at an MOI of 0.1 for 36 hours. 

Cells were fixed with 5% formaldehyde, stained with nucleocapsid protein (clone 1C7C7, ISMMS), and 

visualized with AlexaFluor-568 conjugated secondary antibody (Thermo). Nuclei were stained with 

DAPI, and full wells were imaged with a Celigo imaging cytometer (Nexcelom Biosciences).  

Minipool CRISPR library and lentiviral production  

To generate the minipool, we combined equimolar amounts the same guide RNA vectors (cloned in 

pCC1) that we used for arrayed validation (see above Generation of gene-perturbed A549
ACE2

 lines and 

SARS-CoV-2 infection). In total, we combined 3 guide RNAs for each gene (either, 30 or 11 genes) plus 9 

non-targeting guide RNAs. The non-targeting guide RNA plasmids were added at half the molar ratio of 

the other plasmids. Lentivirus was produced via transfection of the minipool with appropriate packaging 

plasmids (psPAX2: Addgene 12260; pMD2.G: Addgene 12259) using polyethylenimine (PEI) reagent in 

HEK293FT. The target A549
ACE2

 cells were transduced in presence of polybrene (10 g/mL, Santa Cruz) 

(ECCITE-Seq experiment 1) or without (ECCITE-seq experiment 2) at very low MOI to ensure entry of a 

single virus per cell. The survival was below 5% after 2 days of selection with 2 g/mL puromycin 

(Thermo) for both ECCITE-seq experiments. On day 10 post-transduction, the cells were collected and 

processed for ECCITE-seq. 

Expanded CRISPR-compatible Cellular Indexing of Transcriptomes and Epitopes (ECCITE-seq) 

To perform cell-hashing and ECCITE-seq (Mimitou et al., 2019; Stoeckius et al., 2018), we separated 

cells into several sub-pools and, for each pool, we resuspended 1 million cells in 100 µl staining buffer 

(2% BSA, 0.01% Tween in PBS). We then added 10 µl Human TruStain FcX Fc Receptor Blocking 

Solution (BioLegend) and incubated on ice for 10 minutes. We then added hashing antibodies 

(BioLegend), incubated on ice for 30 minutes, and washed cells 3 times with staining buffer. In total, we 
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ran four lanes of a Chromium Single Cell Immune Profiling Solution v1.0 5’ kit (10x Genomics) targeting 

recovery of 12,000 cells per lane (superloading) in experiment 1 and 20,000 cells in experiment 2. Gene 

expression (mRNA), hashtags (Hashtag-derived oligos, HTOs) and guide RNA (Guide-derived oligos, 

GDOs) libraries were constructed (Smibert et al., 2019). Each replicate was sequenced on two 

NextSeq550 75-cycle high-output runs (Illumina). Sequencing reads from the mRNA library were 

mapped to the hg38 reference genome (Ensembl v97) using Cellranger (v3.0.1, 10x Genomics). To 

generate count matrices for HTO and GDO libraries, the CITE-seq-count package was used 

(https://github.com/Hoohm/CITE-seq-Count v1.4.2). Count matrices were then used as input into the 

Seurat R package (v3.2) for downstream analyses (Stuart et al., 2019). 

ECCITE-seq data analysis 

Processing of initial ECCITE-seq experiment with 30 target genes: Cells with low quality metrics, high 

mitochondrial gene content (> 17.5%) and low number of genes detected (≤ 1800) were removed. The 

median number of detected genes was 3309. RNA counts were log-normalized and HTO counts were 

normalized using the centered log-ratio transformation approach, with margin=2 (normalizing across 

cells). To identify cell doublets and assign experimental conditions to cells, we used the HTOseqDemux 

function (Stoeckius et al., 2018). HTOseqDemux-defined cell doublets and negatives were removed from 

any downstream analyses.  

Cellular guide RNA identity for cells in the ECCITE-seq pool was assigned based on GDO unique 

molecular identifier (UMI) counts. We considered a guide RNA detected with ≥ 16 UMI counts (the 

median UMI counts per guide RNA was 503 counts, 93% of cells with ≥ 1 sgRNA). We observed that 

64% of the cells had >1 detected guide RNA (29% 1 guide RNA, 27% 2 guide RNAs, 17% 3 guide 

RNAs). To maximize cell recovery, we retained cells with 1 - 3 guide RNAs per cell (n = 10,265). We 

collapsed the guide RNA information down to target gene level (3 guide RNA per target gene) in the 

following way: For all cells (with 1-3 guide RNAs), we assigned a unique target gene if all detected guide 

RNAs targeted the same gene, or if the additional guide RNA detected was a non-targeting (NT) guide 

RNA (4,715 cells: 4,013 cells with exactly 1 sgRNA and 702 cells with collapsed target gene 

assignment). All remaining cells assigned 2 or 3 separate target genes were discarded.  

Some of the top-ranked genes from the CRISPR screens may be endpoint genes and thus may have subtle 

phenotypes difficult to detect using single-cell transcriptomics. To address this issue, we used the initial 

ECCITE-seq experiment (n = 4,715 cells) and grouped cells by target gene. To identify target gene 

perturbations that lead to systemic transcriptomic changes, we determined the number of differentially 

expressed genes relative to cells with NT guide RNAs. We found that under stringent filtering conditions 

https://github.com/Hoohm/CITE-seq-Count
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(non-adjusted p-value < 10
-5

 or adjusted p-value < 0.2), only 11 target genes showed more than 5 

differentially expressed genes. The second ECCITE-seq experiment was conducted using guide RNAs 

solely for these.  

Joint processing of both ECCITE-seq experiments: Cells with low quality metrics, high mitochondrial 

gene content (> 15%) and low or high number of genes detected (≤ 2000 and > 5000) were removed. The 

median number of detected genes was 3365, with a median of 13,532 UMIs per cell. HTO counts were 

normalized using the centered log-ratio transformation approach, with margin=2 (normalizing across 

cells). To identify cell doublets and assign experimental conditions to cells, we used the HTOseqDemux 

function (Stoeckius et al., 2018). HTOseqDemux-defined cell doublets and negatives were removed from 

any downstream analyses. Guide RNA counts were normalized similar to HTO UMI counts. Cell-wise 

guide RNA assignment was achieved using the MultiSeqDemux function (McGinnis et al., 2019). We 

only retained cells assigned with a single HTO and a single guide RNA (ECCITE-seq experiment 1: n = 

1,824 cells, ECCITE-seq experiment 2: n = 17,029 cells). Cells from ECCITE-Seq experiment 1 and 

experiment 2 were harmonized by log-normalizing, followed by the identification of the 2000 most 

variable features with “vst” selection method. Next, we we used FindIntegrationAnchors and 

IntegrateData with the first 40 principle components. 

In the harmonized data set (n = 18,853 cells), we used FindMarkers to find differentially expressed 

genes between non-targeting cells and cells that belonged to a targeted gene class. We used up to 100 of 

the most upregulated genes with adjusted p-value < 0.01 and minimal logeFC threshold > 0.1 filter as 

input into the heatmap in Figure 5B. The same FindMarkers analysis (but using the non-adjusted p-

value < 0.01 with a maximum of the 300 most significant DEGs) was used as input into the EnrichR 

package to run pathway analysis using the human WikiPathways database (v. 2019) (Kuleshov et al., 

2016; Slenter et al., 2018). Figure 5C shows -log10 transformed p-values for the union of all enriched 

pathways with an adjusted p-value < 0.01 across the 11 target genes with perturbation signatures. 

Plaque assay 

Infectious titer in supernatant of SARS-CoV-2 infections (from A549
ACE2

) was determined by plaque 

assay in Vero E6 cells. Cells were seeded in 12-well plates before infection with logarithmically diluted 

supernatants in a total inoculum of 100 ul, rocking plates every 10 minutes for 1 hour. Then an overlay of 

Minimum Essential Media with 0.12% NaHCO3, 4 mM L-glutamine, 0.2% BSA, 10 mM HEPES and 

0.7% OXOID agar (Thermo) was aliquoted into wells and plates were incubated for 48 hours before 

fixing with 5% formaldehyde. After 24 hours, plaques were stained with crystal violet (1% crystal violet 

in 20% EtOH) for 15 minutes before washing wells and counting plaques. 
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Bulk RNA-sequencing 

RNA-sequencing libraries were constructed from 1ug of RNA per sample using the TruSeq Stranded 

mRNA Library Prep Kit (Illumina) according to the manufacturer’s instructions. Sequencing libraries 

were sequenced using an Illumina NextSeq 500 platform and fastq files were generated using 

bcl2fastq (Illumina). Alignment to the SARS-CoV-2 genome (GenBank: MN985325.1) were 

performed using bowtie (Langmead et al., 2009). Reads were aligned to hg19 using STAR aligner in 

the Basespace RNA-Seq Alignment application (Illumina) and processed using DESeq2 (Love et al., 

2014). Sample distances were calculated using read counts from the regularized log transform in DESeq2. 

K-means clustering was perfomed using the kmeans function in R/RStudio. Enriched Reactome 

pathways were identified using the STRING tool (Szklarczyk et al., 2019). 

Measurement of cellular cholesterol  

Cellular cholesterol was measured using the Cholesterol-Glo assay (Promega). For each cell line 

(CRISPR-perturbed or drug-treated), we counted 100,000 cells, washed with 1xPBS twice and 

resuspended in 100 L cell lysis solution for 30 min at 37°C. Following the incubation, 10 L of cell 

lysate was used to measure the cholesterol levels in 96 well plates in a final reaction volume of 100uL per 

well (without esterase). Luminescence was measured after incubating the plate for 1 hour at room 

temperature in the dark. Using the same lysis sample, the protein concentration was determined using the 

BCA assay (Thermo). The cholesterol levels were normalized to the respective protein concentration of 

each sample. A549
ACE

 cells were incubated with 10 M amlodipine (Sigma) or DMSO for 24 hours. 

Cholesterol levels were then determined as described above. 

Flow cytometry of ACE2 cell surface expression   

Cells were harvested, counted and about 100,000 cells were washed with Dulbecco’s phosphate-buffered 

saline (PBS, Caisson Labs) and then stained with LIVE/DEAD Violet stain (Thermo, 34864). Following a 

wash with 1x PBS, all subsequent washes and antibody dilutions were performed using 1x PBS 

supplemented with 2% FBS. Wild-type or Cas9-perturbed A549
ACE2

, Caco-2 and Calu-3 cells were 

stained for 30 min on ice with 0.25 g of anti-ACE2 antibody (R&D Systems, AF933) in ~50 L residual 

volume. Following two washes with 1x PBS with 2% FBS, samples were stained on ice for 20 min with 

7.5 L of anti-goat-APC secondary antibody (R&D Systems, F0108). Cell acquisition and sorting was 

performed using a Sony SH800S cell sorter with a 100 m sorting chip. We used the following gating 

strategy: 1) We excluded the cell debris based on the forward and reverse scatter; 2) Doublets were 

excluded by plotting FSC height vs FCS area, 3) Dead cells were excluded by live-dead stain. We 

recorded at least 5,000 cells for A549
ACE2

 and at least 3,000 cells for Calu-3 and Caco-2 that pass the 
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gating criteria described above. Gates to determine ACE2-APC+ cells were set based on control A549 

wild type cells or only secondary antibody stained Calu-3 and Caco-2, where the percent of ACE2 

positive cells was set as <5% (background level). Flow cytometry analyses were performed using FlowJo 

v10. 

Immunofluorescence of ACE2 and endo/lysosomal markers 

A549
ACE2

 Cas9-transduced (specific gene or non-targeting) cell lines were seeded on poly-D-lysine-

coated coverslips (Electron Microscopy Sciences) 24 hours before they were fixed with 4% formaldehyde 

(Sigma) diluted in 1x PBS (Caisson Labs) (Daniloski et al., 2020). Following 3 washes with 1x PBS, cells 

were blocked with 1x PBS with 2% BSA for 30 min at room temperature. Cells were stained with mouse 

anti-2A antibody diluted at 1:250 (clone 3H4, Millipore Sigma, MABS2005) to recognize ACE2-2A, and 

rabbit anti-EEA1 diluted at 1:100 (Thermo, MA5-14794). To detect ACE2 in Caco-2 cells, goat anti-

ACE2 (R&D Systems, AF933) was used at 1.25 g/mL. Cell were incubated with primary antibodies for 

3 hours at room temperature in a moisturized chamber. Coverslips were then washed 5 times with 1x PBS 

with 2% BSA and then incubated with Alexa-conjugated secondary antibodies (Jackson 

ImmunoResearch) diluted at 1:1000 for 45 min at room temperature. Coverslips were then washed 5 

times with 1x PBS with 2%BSA, and DAPI (Sigma) was added in the fourth wash at a concentration of 

0.1 g/mL. To stain the lysosomes, LysoTracker DeepRed (Thermo) was diluted to 70 nM in culture 

media and was added to actively growing cells on coverslips and were incubated for 1 hour at 37C. 

Following incubation with LysoTracker, cells were processed for immunofluorescence as described 

above. Confocal images were acquired on a Zeiss LSM 780 with a 20x/0.8 Plan-Apochromat objective or 

a 63x/1.4 Plan-Apochromat objective (Zeiss). Epifluorescence images were acquired using the same 

system; both fitted with a Zeiss Axiocam 506 mono (Zeiss). Images were processed using Zen Black 

2012 (Zeiss) and FIJI 2.1.0; Java 1.8.0-202 (Schindelin et al., 2012). Linear histogram adjustments were 

applied uniformly within experiments for clarity of presentation. 

ACE2 localization was determined on images taken on a Zeiss LSM 780 with a 20x/0.8 Plan-Apochromat 

objective using Zen Black (Zeiss). The A549
ACE2

 polyclonal cell line had both ACE2 positive and 

negative cells. Only ACE2 positive cells were then manually scored if they had a distinct accumulation of 

cytoplasmic vesicles-like hollow structures, compared to the non-targeting (NT) control. In the NT 

control, the ACE2 staining was seen on the plasma membrane and diffuse in the cytoplasm. The scoring 

was performed on 2 biological replicates (that is, two separate non-targeting controls and two separate 

Rab7A knockout lines engineered using 4 separate Cas9 guide RNAs). We scored ~430 cells per 

replicate.  To quantify the size of ACE2 foci, confocal microscopy images were thresholded using FIJI’s 
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local-threshold (Phansalkar radius = 15) and then a watershed transform was applied. Foci were counted 

and measured using FIJI’s Analyze Particles function. 

Western blots 

A549
ACE2

 or Huh7.5
ACE2

 cells were collected, washed with 1x PBS and lysed with TNE buffer (10 mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Nonidet P-40) in presence of protease inhibitor 

cocktail (Bimake B14001) for 1 hour on ice. Cells lysates were spun for 10 min at 10,000 g, and protein 

concentration was determined with the BCA assay (Thermo). Equal amounts of cell lysates (20g) were 

denatured in Tris-Glycine SDS Sample buffer (Thermo LC2676), and loaded on a Novex 4 - 20% Tris-

Glycine gel (Thermo XP04205BOX). PageRuler pre-stained protein ladder (Thermo 26616) was used to 

determine the protein size. The gel was run in 1x Tris-Glycine-SDS buffer (IBI Scientific IBI01160) for 

about 120 min at 120V. Proteins were transferred on a nitrocellulose membrane (BioRad 1620112) in 

presence of prechilled 1x Tris-Glycine transfer buffer (FisherSci LC3675) supplemented with 20% 

methanol for 100 min at 100V. Immunoblots were blocked with 5% skim milk dissolved in 1x PBS with 

1% Tween-20 (PBST) and incubated overnight at 4C separately with the following primary antibodies: 

rabbit anti-RAB7A (0.1g/mL, NovusBio, NBP1-87174), rabbit anti-GAPDH (0.1 g/mL, Cell 

Signaling, 2118S), rabbit anti-CCDC22 (0.34 g/mL, Proteintech, 16636-1-AP), rabbit anti-ATP6V1A 

(0.46 g/mL, Proteintech, 17115-1-AP), rabbit anti-ACE2 (0.5 g/mL, Invitrogen, MA5-32307), and 

mouse anti-beta tubulin (0.5 g/mL, Invitrogen, 32-2600). Following the primary antibody, the blots were 

incubated with IRDye 680RD donkey anti-rabbit (0.2 g/mL, LI-COR 926-68073) or with IRDye 800CW 

donkey anti-mouse (0.2 g/mL, LI-COR 926-32212). The blots were imaged using Odyssey CLx (LI-

COR).  

 

Quantification and Statistical Analysis 

Statistical analysis 

Statistical parameters and details are reported in each figure legend. Generally, experiments were repeated 

with at least three biological replicates. Each plot includes points for individual biological replicates and 

mean ± s.e.m. error bars unless otherwise specified. In general, biological replicates consist of replicate 

viral transductions (CRISPR), replicate RNA transfections (siRNA), or replicate drug treatments (small 

molecule inhibitors) and are specified in each figure legend. For imaging experiments, the number of cells 

scored per biological replicate is given in the figure legend. 
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When assessing significance of genetic perturbations and/or inhibitor treatments, we employed first a one-

way or two-way ANOVA to assess significance and, when significant, post-hoc comparisons were 

performed using the false-discovery rate method of Benjamini-Krieger-Yekutieli to correct for multiple 

comparisons. Before applying ANOVA, we first verified the equality of group variances using the 

Brown-Forsythe test. Details for all ANOVA and post-hoc multiple comparisons are reported in Table 

S6; t-tests are reported in the respective figure legends.  

Throughout the manuscript, we use r to denote the Pearson correlation and rs to denote the Spearman 

correlation; all reported correlations were significant using the cor.test function in R. For the BioID 

interactome analysis, we derived an empirical p value by resampling from a null distribution (n = 10,000 

gene shuffling iterations). Statistical analyses were performed in GraphPad Prism 8 and RStudio 

1.2.5019.  
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Supplementary Tables 

 
Table S1.  SARS-CoV-2 pooled CRISPR screen ranked gene lists for low and high MOI screens, 

Related to Figures 1 and S1. 

Table S2.  Gene set enrichment analysis for SARS-CoV-2 pooled CRISPR screen; affinity proteomics 

enriched CRISPR screen genes for each viral gene; Gene Ontology (GO) analyses of SARS-

CoV-2, ZIKV and IAV pooled CRISPR screens, Related to Figures 2, 3 and S2. 

Table S3.  Arrayed validation CRISPR guide RNAs and short-interfering RNAs, Related to Figures 4, 

S3 and S4 and STAR Methods. 

Table S4.  DGIdb druggable gene details for top-ranked CRISPR screen genes and FDA approval 

status of tested inhibitors, Related to Figures 4 and S4. 

Table S5.  ECCITE-seq reagents and differentially-expressed genes, Related to Figures 5 and S5 and 

STAR Methods. 

Table S6. Significance testing results, Related to Figures 4, 5, S3 and S4. 
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• Genome-wide CRISPR knockout screen identifies host factors for SARS-CoV-2 infection 

• Top-ranked genes include vacuolar ATPases, Retromer, Commander and Arp2/3 

complex 

• Validation using CRISPR knockout, RNA interference and small molecule inhibitors  

• Reduced infection via increased cholesterol biosynthesis and sequestration of ACE2 

 

 

 

In Brief 

To identify potential therapeutic targets for SARS-CoV-2, Daniloski et al. conduct a genome-wide CRISPR 

screen in human lung epithelial cells. They identify genes and pathways required for SARS-CoV-2 

infection, including the vacuolar ATPase proton pump, Retromer, and Commander complexes. Using 

single-cell transcriptomics, they identify upregulation of cholesterol biosynthesis as a common 

mechanism underlying viral resistance, in addition to ACE2 sequestration.  
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