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 2 

Abstract 31 

Chronic neuroinflammation is observed in HIV+ individuals on suppressive combination 32 

antiretroviral therapy (cART) and is thought to cause HIV-associated neurocognitive 33 

disorders. We have recently reported that expression of HIV intron-containing RNA 34 

(icRNA) in productively infected monocyte-derived macrophages induces pro-35 

inflammatory responses. Microglia, yolk sac-derived brain-resident tissue macrophages, 36 

are the primary HIV-1 infected cell type in the central nervous system (CNS). In this 37 

study, we tested the hypothesis that persistent expression of HIV icRNA in primary 38 

human microglia induces innate immune activation. We established multiple orthogonal 39 

primary human microglia-like cell cultures including peripheral blood monocyte-derived 40 

microglia (MDMG) and induced pluripotent stem cell (iPSC)-derived microglia. Unlike 41 

MDMG, human iPSC-derived microglia (hiMG), which phenotypically mimic primary CNS 42 

microglia, were robustly infected with replication competent HIV-1, and establishment of 43 

productive HIV-1 infection and de novo viral gene expression led to pro-inflammatory 44 

cytokine production. Blocking of HIV-1 icRNA expression, but not multiply spliced viral 45 

RNA, either via infection with virus expressing a Rev-mutant deficient for HIV icRNA 46 

nuclear export or infection in the presence of small molecule inhibitor of CRM1-mediated 47 

viral icRNA nuclear export pathway, attenuated induction of innate immune responses. 48 

These studies suggest that Rev–CRM1-dependent nuclear export and cytosolic sensing 49 

of HIV-1 icRNA induces pro-inflammatory responses in productively infected microglia. 50 

Novel strategies targeting HIV icRNA expression specifically are needed to suppress 51 

HIV-induced neuroinflammation.  52 

  53 
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Importance 54 

Although peripheral viremia can be effectively suppressed with the advent of highly 55 

active anti-retroviral therapy, a significant portion of HIV+ individuals still suffer from 56 

neurocognitive disorders. Despite suppressive therapy, HIV persists in various tissues 57 

including central nervous system (CNS), leading to chronic inflammation, the chief driver 58 

of neurocognitive disorders. While persistent infection has been described in CNS-59 

resident macrophages, microglia, molecular mechanisms of how HIV infection in 60 

microglia contributes to neuronal inflammation have remained unclear. In this study, we 61 

used multiple primary human microglia-like cellular platforms and demonstrate that HIV-62 

1 intron-containing RNA induces microglial activation and damage. Since current anti-63 

retroviral therapy does not suppress HIV-1 transcription, new therapeutics targeting HIV 64 

RNA expression may help to treat HIV-associated neurocognitive disorders. 65 

66 
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Introduction 67 

Since the advent of combination antiretroviral therapy (cART), mortality and morbidity of 68 

HIV-1 infection has been dramatically reduced. Although prolonged cART can suppress 69 

peripheral viremia in HIV+ individuals under the detection limit for decades, these 70 

therapeutic regimens fail to suppress chronic immune activation, the chief driver of HIV-71 

associated non-AIDS complications (HANA) including HIV-associated neurocognitive 72 

disorders (HAND) (1, 2). Numerous studies have demonstrated that inflammatory 73 

markers associated with myeloid cell activation are strongly and selectively predictive of 74 

HAND (3). In vivo, persistent HIV infection has been reported in the central nervous 75 

system (CNS)-resident macrophages including perivascular macrophages and microglia 76 

(4-7). However, molecular mechanisms of how HIV infection in the CNS-resident 77 

macrophages contributes to chronic immune activation have remained unclear.  78 

  Recently, we have shown that expression and Rev–CRM1-dependent nuclear 79 

export of HIV intron-containing RNA (icRNA) in productively infected peripheral blood 80 

monocyte-derived macrophages (MDMs) is the trigger to induce type I interferon (IFN-I)-81 

dependent production of pro-inflammatory cytokines even in the absence of new viral 82 

particle production (8). Similar findings have also been reported in monocyte-derived 83 

dendritic cells (9), suggesting HIV icRNA expression-induced innate immune activation 84 

might be a conserved phenotype in myeloid cells. Numerous studies have documented 85 

continued presence of HIV RNA in the CSF even after prolonged cART (3, 10-12). Since 86 

cART regimens as constituted presently cannot suppress viral RNA expression from 87 

integrated proviruses, it is plausible that persistent expression of HIV icRNA in the CNS-88 

resident microglia and perivascular macrophages contributes to the chronic 89 

inflammatory state in the brain of HIV+ individuals on cART.  90 
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 Productively infected microglia can contribute to virus persistence and CNS 91 

pathology during HIV-1 infection (4, 13), though the extent to which these reservoirs 92 

persist and the mechanisms that might allow for virus persistence in these cells in 93 

patients on cART remains unclear. HIV infection of microglia has been shown to impact 94 

microglial functions including activation status, viability and metabolism (14). In addition, 95 

changes in microglial functions have been postulated to contribute to neuropathogenesis 96 

by secreting pro-inflammatory cytokines and neurotoxins (15). Activated microglia are 97 

also known to cause neurodegeneration directly by damaging synapses or indirectly via 98 

activation of other CNS-resident cells such as astrocytes (reviewed in (16)). Microglia 99 

play a pivotal role in maintaining brain homeostasis, and microglial dysfunction caused 100 

by HIV infection is thought to impact CNS functionality of HIV+ individuals on 101 

suppressive cART. To date, several mechanisms have been proposed to explain how 102 

HIV induces microglia activation. For example, HIV proteins Tat, gp120, Nef and Vpr 103 

have been shown to activate microglia, leading to alterations in microglial functions and 104 

neuronal health (reviewed in (14)). However, the physiological relevance of these 105 

findings needs to be carefully considered, since most of the studies have used 106 

overexpression of viral proteins or transgenic rodents. Whether such high 107 

concentrations of these viral proteins are observed in the CNS of HIV+ patients on 108 

suppressive therapy requires further investigation. While HIV infection of primary human 109 

fetal microglia has been reported (17, 18), these cells are not easily accessible, which 110 

preclude detailed investigations of the molecular mechanisms of HIV-induced innate 111 

immune activation. Overall, the molecular mechanisms of HIV-induced microglia 112 

activation in the CNS remain unclear. 113 
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 In this study, we investigate the role of HIV-1 infection of microglia in promoting 114 

neuroinflammation using two model systems, primary monocyte-derived microglia 115 

(MDMG) and induced pluripotent stem cell (iPSC)-derived microglia (iCell-MG and 116 

hiMG). We report that while HIV-1 infection of MDMGs is attenuated, restriction to 117 

infection was alleviated upon SAMHD1 degradation. In contrast, both iCell-MGs and 118 

hiMGs were robustly infected with wild type HIV-1, and innate immune activation in 119 

these cells was triggered by de novo expression and nuclear export of icRNA via the 120 

Rev–CRM1-dependent pathway.  121 

 122 

Results 123 

MDMG model of HIV-1 infection in microglia 124 

HIV-1 infection of primary human fetal microglia has been reported (17, 18), though 125 

these cells are not easily accessible due to ethical and technical issues. To overcome 126 

these limitations, microglia-like cells have been generated in vitro from monocytes and 127 

characterized extensively (19-22). We derived microglia-like cells from CD14+ 128 

monocytes by culturing in serum-free conditions in the presence of IL-34 and GM-CSF 129 

(Figure 1A). These cells displayed a unique microglia-like ramified morphology (Figure 130 

1B), as previously reported (19, 20). MDMGs have been shown to display similar 131 

morphology to that of human primary microglia and express genes that are highly or 132 

uniquely expressed in human microglia (19-23). In agreement with these previous 133 

findings, expression of P2RY12 and Gas6 mRNAs in MDMGs was significantly 134 

enhanced compared to those in donor-matched monocyte-derived macrophages 135 

(MDMs) (Figure 1C and D). Furthermore, expression of P2RY12 and IBA-1 in MDMGs 136 

was confirmed by immunofluorescence (Figure 1E). We next examined if MDMGs were 137 

 on D
ecem

ber 16, 2020 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 7 

susceptible to HIV-1 infection. MDMGs were infected with replication competent CCR5-138 

tropic HIV-1 (Lai/YU-2env), and p24Gag secretion in the culture supernatants was 139 

quantified by ELISA. While infection of MDMGs resulted in productive infection and 140 

release of progeny virions (Figure 1F), the amount of p24Gag in the supernatants was 141 

very low.  Since MDMGs were differentiated from peripheral blood monocytes in GM-142 

CSF and IL-34 containing media, and GM-CSF has been shown to alter phosphorylation 143 

status of SAMHD1 and render MDMs less susceptible to HIV-1 infection (24), we sought 144 

to determine the  phosphorylation status of SAMHD1 in MDMGs. Western blotting 145 

analysis demonstrated that while total SAMHD1 levels were similar, MDMGs expressed 146 

significantly reduced levels of phosphorylated SAMHD1, compared to donor-matched 147 

MDMs or THP-1 monocytoid cells (Figure 1G) (25, 26). We next infected MDMGs and 148 

donor-matched MDMs with HIV-1 in the absence or presence of SIVmac Vpx containing 149 

virus-like particles (VLPs) that degrades SAMHD1 (27, 28) and enhances HIV-1 150 

infection of myeloid cells (29). In the absence of SIVmac Vpx, MDMGs produced much 151 

lower amount of p24Gag in the supernatants than MDMs (Figure 1H). Interestingly, pre-152 

treatment of MDMGs with SIVmac Vpx VLPs significantly enhanced p24Gag production 153 

(Figure 1H), suggesting that abundant expression of anti-viral SAMHD1 in MDMGs 154 

restricts efficient infection of these cells by HIV-1.  155 

 156 

HIV-1 infection induces immune activation in MDMGs 157 

We have recently shown that infection of MDMs with HIV-1 induces IFN-I-dependent 158 

pro-inflammatory responses (8). To investigate whether HIV-1 infection of microglia 159 

induces innate immune activation, total RNA isolated from HIV-1 infected-MDMGs in the 160 

presence of SIVmac Vpx VLPs was analyzed with a NanoString human 161 
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neuroinflammation panel that contains more than 750 target genes covering the core 162 

pathways and processes involved in neuroinflammation. Amongst those analyzed, 163 

several mRNAs were up-regulated in a HIV-1 infection specific manner, i.e. up-164 

regulation was only seen in HIV-infected untreated MDMGs but not in reverse 165 

transcriptase inhibitor (efavirenz, EFV)- or integrase inhibitor (raltegravir, Ral)-treated 166 

MDMGs (Figure 2A, B and C). Highly up-regulated genes (> mean + 2xSD) compared 167 

to mock, EFV- or Ral-treated MDMGs are shown in Figure 2A, 2B and 2C, respectively, 168 

which include interferon-stimulated genes (ISGs) (e.g. Siglec1/CD169, RSAD2) and pro-169 

inflammatory cytokines (e.g. CXCL10/IP-10, CCL7/MCP-3). To confirm the results from 170 

NanoString analysis, IP-10 production in the MDMG culture supernatants was measured 171 

by ELISA. We found that IP-10 production was induced upon infection of MDMGs with 172 

HIV-1, which was inhibited upon pretreatment of MDMGs with EFV or Ral (Figure 2D). 173 

HIV-1 intron-containing RNA (icRNA) export into cytosol via the Rev–CRM1-dependent 174 

pathway has previously been shown to induce innate immune activation in MDMs and 175 

dendritic cells (8, 9). To investigate the role of HIV-1 icRNA export by the Rev–CRM1-176 

dependent pathway in MDMG innate activation, HIV-1 infected MDMGs were treated 177 

with a CRM1 inhibitor (KPT-330, selinexor) or MDMGs were infected by an HIV-1 Rev-178 

deficient (dominant negative) mutant (M10) (8, 30). While establishment of infection of 179 

MDMGs and HIV-1 multiply-spliced RNA expression was not affected by KPT treatment 180 

or M10 infection (Figure 2E), production of p24Gag which is transcribed from icRNA, was 181 

completely inhibited by KPT-330 treatment or in M10-infected MDMGs (Figure 2F). 182 

Interestingly, expression of IP-10 mRNA was severely reduced in HIV-1-infected 183 

MDMGs upon KPT-330 treatment or in M10-infected MDMGs (Figure 2G). These 184 
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results suggest that innate immune activation of MDMGs upon HIV-1 infection requires 185 

cytoplasmic expression of HIV icRNA exported via the Rev–CRM1-dependent pathway. 186 

 187 

iPSC-derived microglia are highly susceptible to HIV-1 infection  188 

Fate mapping analysis suggests that microglia in the brain originate from yolk-sac-189 

derived primitive macrophages during embryonic hematopoiesis (31, 32). Unlike other 190 

tissue-resident macrophages such as Kupffer cells and alveolar macrophages, microglia 191 

are not replenished with circulating bone marrow-derived monocytes during adulthood 192 

(33-35). To better model HIV-1 infection of human primary microglia, we tested if human 193 

induced pluripotent stem cells (iPSCs)-derived microglia can be infected with HIV-1. We 194 

obtained iPSC-derived microglia, iCell Microglia (iCell-MG), from a commercial source 195 

(FUJIFILM Cellular Dynamics) which were generated as previously described (36). iCell-196 

MGs showed heterogeneous morphology (Figure 3A) and expressed the 197 

macrophage/microglia marker IBA-1 (Figure 3B). Flow cytometry analysis revealed 198 

robust intracellular expression of the microglia-specific marker P2RY12, and minimal 199 

expression on the cell surface (Figure 3C). Immunoblotting analysis revealed that, in 200 

contrast to MDMGs, the majority of SAMHD1 was phosphorylated in iCell-MGs (Figure 201 

3D). We then infected iCell-MGs with replication competent CCR5-tropic HIV-1/YU-2 202 

and monitored p24Gag production in the culture supernatants over 15 days. We found 203 

that iCell-MGs persistently produced p24Gag, which peaked at 6 days p.i. (Figure 3E). 204 

Intracellular p24Gag staining revealed that about 20% of iCell-MGs in the culture were 205 

productively infected at 6 days p.i. (Figure 3F). HIV-1 replication in the infected iCell-MG 206 

cultures was inhibited by reverse transcriptase (efavirenz, EFV), integrase (raltegravir, 207 

Ral) and CRM1 (KPT-335, verdinexor) inhibitors (Figure 3E and F). To investigate if 208 
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HIV-1 infection of iCell-MGs induced innate immune activation, we harvested cells on 209 

day 6 p.i. and stained them for CD169, a myeloid-cell-specific ISG (37, 38). iCell-MGs 210 

upregulated CD169 expression upon infection with HIV-1 (Figure 3G) on both infected 211 

cells and on bystander uninfected cells, suggesting that low levels of IFN-I was secreted 212 

by infected cells similar to that observed in HIV-1-infected MDMs (8). Expression of 213 

CD169 was suppressed by pretreatment of iCell-MGs with RT (EFV), integrase (Ral) 214 

and CRM1 (verdinexor) inhibitors (Figure 3H). Furthermore, IP-10 and CCL2 production 215 

was induced by productive infection of iCell-MGs by HIV-1 and inhibited upon treatment 216 

by EFV, Ral or verdinexor (Figure 3I and J). These results suggest that iPSC-derived 217 

microglia are highly susceptible to HIV-1 infection, and that expression and nuclear 218 

export of HIV icRNA in infected iCell-MGs triggers innate immune responses in microglia. 219 

 220 

Establishment of iPSC-derived microglia/neuron co-culture system  221 

We took advantage of recent descriptions in the literature for generation of microglia 222 

from iPSC lines (39). Briefly, iPSC-derived human microglia were derived by co-culturing 223 

iPSC-derived yolk-sac primitive macrophages (hiMAC) with iPSC-derived neurons 224 

(hiNeuron) (Figure 4A and B) (39). Cells in the hiMG–hiNeuron co-cultures expressed 225 

significantly higher levels of mRNA of microglia-specific markers TMEM119 (Figure 4C), 226 

CX3CR1 (Figure 4D), and P2RY12 (Figure 4E) compared to those in hiNeuron mono-227 

culture or in hiMACs. Immunofluorescence revealed hiMGs expressed 228 

macrophage/microglia markers (IBA-1 or TMEM119) (39, 40) and made numerous cell-229 

to-cell contacts with neurons as previously reported (Figure 4F) (39). P2RY12 was 230 

highly expressed on the cell surface of hiMGs, similar to CNS-resident human microglia 231 
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(23, 41), and these cells were clearly distinguishable from hiNeuron (tubulin β3/TUBB3+) 232 

by flow cytometry (Figure 4G).   233 

 234 

HIV-1 infection of hiMGs induces pro-inflammatory responses 235 

hiMG–hiNeuron co-cultures were infected with replication competent HIV-1 Lai/YU-2env, 236 

and HIV-1 replication was measured by flow cytometry (intracellular p24Gag expression) 237 

or ELISA (p24Gag in the culture supernatants). While hiNeurons were not susceptible to 238 

HIV-1, hiMGs were robustly infected with HIV-1 in hiMG–hiNeuron co-cultures (Figure 239 

5A and B). Furthermore, establishment of infection in hiMG–hiNeuron co-cultures was 240 

blocked by pretreatment with EFV and Ral, and anti-CRM1 inhibitor (KPT-330) (Figure 241 

5B). We detected increasing amounts of p24Gag in the culture supernatants over time 242 

(Figure 5C), which is suggestive of persistent virus replication in hiMG–hiNeuron co-243 

cultures. HIV-1 infection induced increased production of IP-10 (Figure 5D) and up-244 

regulated CCL2 secretion (Figure 5E). HIV-1 infection in microglia has been postulated 245 

to lead to neuronal disorder by disrupting microglia viability and functionality (14). To 246 

investigate the impact of HIV-1 infection on microglial functionality and neuronal toxicity, 247 

HIV-1-infected hiMG–hiNeuron co-cultures were analyzed for microglial and neuronal 248 

viability by flow cytometry on day 6 p.i. Interestingly, the proportion of live microglia in 249 

the co-cultures decreased upon HIV-1 infection over time, which was suppressed upon 250 

initiation of infections in the presence of HIV-1 inhibitors (EFV and Ral), suggesting that 251 

productive HIV-1 infection, but not exposure to HIV-1 particles alone, affected hiMG 252 

viability (Figure 5F). On the other hand, HIV-1 spread in hiMG–hiNeuron co-cultures did 253 

not affect the viability of hiNeurons (Figure 5G). These data suggest that hiMGs in the 254 

microglia–neuron co-cultures are highly susceptible to HIV-1 infection and that Rev–255 

 on D
ecem

ber 16, 2020 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 12 

CRM1-dependent nuclear export of HIV icRNA in microglia triggers secretion of pro-256 

inflammatory cytokines, which might contribute to neuroinflammation in vivo.  257 

 258 

Discussion 259 

HIV infection and innate immune responses 260 

Chronic inflammation is thought to be the chief driver of HAND (2, 42, 43), though 261 

underlying mechanisms of persistent neuroinflammation remain unclear. In this study, 262 

we demonstrated that HIV-1 infection of microglia induces innate immune activation, 263 

resulting in secretion of pro-inflammatory cytokines, up-regulation of ISGs, and microglia 264 

cytotoxicity. Considering their long lifespan with self-renewal capacity (31, 44, 45), 265 

coupled with the observation that HIV-1+ microglia have been detected in cART-266 

suppressed individuals (4), it is highly plausible that persistently infected microglia 267 

produce pro-inflammatory cytokines and chemokines, such as IFN-I and IP-10, 268 

contributing to a chronic state of neuroinflammation. Previous studies have suggested 269 

that IFN-I production contributes to cognitive impairments in HIV-1 infection (46) and 270 

neurodegenerative diseases (47, 48). Although multiple roles for chemokines in CNS 271 

inflammation have been described, CCL2, specifically, has been shown to modulate 272 

neuronal death in a mouse model (49, 50). Elevated levels of IP-10 have been observed 273 

in several neurodegenerative diseases including in patients with HAND (51) and are 274 

known to affect neuronal viability (52, 53). Since we did not find obvious neuronal 275 

cytotoxicity in hiMG–hiNeuron co-cultures in 6 days of infection, future studies will be 276 

focused on long-term co-cultures and the consequence of persistent HIV-1 infection in 277 

microglia on neuronal cytotoxicity such as synaptic loss and dendrite degeneration (54).  278 

 279 
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HIV icRNA and innate immune responses 280 

While viral proteins such as Tat, Vpr and gp120 have been hypothesized to contribute to 281 

HIV-associated neuroinflammation (14), most of these studies have relied on 282 

overexpression of viral proteins or transgenic animals. In this study, we showed that 283 

HIV-1-infection-induced activation of microglia in all primary cell culture models was 284 

triggered by cytoplasmic export of icRNA, since infection with HIV expressing a Rev 285 

mutant deficient for CRM1 interaction (M10) was unable to induce innate immune 286 

activation (Figure 2), and CRM1 inhibitors suppressed HIV-induced activation in 287 

microglia (Figure 2, 3 and 5). We have previously shown that HIV icRNA expression 288 

alone induces IFN-I-dependent proinflammatory responses in MDMs, even though HIV 289 

icRNA expression does not lead to production of new virions or functional viral proteins 290 

including gp120 and Vpr (8). Furthermore, the Rev mutant M10, which fails to induce 291 

innate immune activation in microglia, expresses multiply-spliced viral RNAs, including 292 

those encoding for Tat, suggesting that de novo Tat expression is not the trigger for HIV-293 

induced microglia activation. Interestingly, HIV icRNA (gag mRNA) has been detected in 294 

the CSF from HIV-1+ individuals on cART (3, 10-12), and a highly sensitive RNAScope 295 

assay has revealed presence of a significant number of SIV gag mRNA (icRNA) positive 296 

cells in the brain of cART-suppressed monkeys (55). We postulate that these viral 297 

icRNA expressing cells in the brain, which are most likely microglia, induce pro-298 

inflammatory cytokines and affect neuronal health in cART-suppressed individuals. 299 

Several drug candidates that suppress expression or stability of HIV icRNA such as Tat 300 

and Rev inhibitors (56, 57), or inhibitors that selectively target CRM1-dependent nuclear 301 

export of HIV icRNA (58), might have clinical benefit for suppressing HIV icRNA induced 302 

aberrant inflammation and incidence of HAND in cART-suppressed patients. 303 
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 304 

Establishment of primary human microglia culture system for HIV infection 305 

studies. 306 

In order to investigate the role of HIV-1 infection of microglia in HIV-1 307 

neuropathogenesis, and to overcome the limited access to primary microglia, we 308 

employed three different in vitro models of primary microglia in this study: MDMG, iCell-309 

MG and hiMG. MDMG expressed microglia-specific markers such as P2RY12 and were 310 

poorly susceptible to HIV-1 infection (Figure 1). Since peripheral blood monocytes are 311 

readily accessible and the protocol for MDMG generation is relatively simple, MDMG is a 312 

reasonable model to study HIV-1 biology in microglia. It should be pointed out that 313 

infection of MDMG with HIV-1 in the absence of SAMHD1 antagonism was inefficient 314 

(Figure 1). Further optimization of the generation protocol is warranted, for example 315 

using M-CSF instead of GM-CSF in the differentiation conditions, since GM-CSF has 316 

been shown to induce anti-viral SAMHD1 expression in MDMs (24) (Figure 1G). To 317 

better mimic the origin of microglia (yolk-sac-derived), we used two independent iPSC-318 

derived microglia lines and tested their susceptibility to replication competent HIV-1 in 319 

vitro. iCell-MGs are commercially available and expressed microglia markers IBA-1 and 320 

P2RY12 (Figure 3). It should be noted that as opposed to CNS-resident microglia (23, 321 

41), we observed mostly intracellular expression of the microglia-specific marker, 322 

P2RY12 in iCell-MGs (Figure 3B). iCell-MGs were highly susceptible to HIV-1 infection 323 

(Figure 3), which is in agreement with previous studies using primary fetal microglia (17). 324 

While iCell-MG is a powerful tool to study HIV-1 infection in microglia, the inability to 325 

genetically manipulate these cells limits their utility in robust mechanistic approaches.  326 
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The third model we used was hiMG–hiNeuron co-cultures that were generated 327 

from iPSCs. This system has numerous advantages: (i) hiMGs are highly susceptible to 328 

HIV-1 infection (Figure 5), (ii) establishment of iPSC-derived microglia and neuron co-329 

cultures allows for the study of intricate interactions between diverse cell types in the 330 

context of viral infection and, importantly, the impact of HIV-infection induced microglia 331 

activation can be assessed on autologous neurons, (iii) the purinergic receptor, P2RY12, 332 

which detects extracellular nucleotides accompanied with CNS injury and regulates 333 

microglial homeostasis (41, 59, 60), and plays an important role in communicating with 334 

neighboring neurons to protect their functions (61) is robustly expressed on the hiMG 335 

cell surface (in contrast to the mostly intracellular expression of P2RY12 in iCell-MGs), 336 

(iv) iPSCs are amenable to gene-editing approaches (62), and (v) iPSC lines generated 337 

from somatic cells of various individuals including HIV-infected patients make possible 338 

studies of HIV infection of microglia from unique genetic backgrounds and their 339 

contribution to human disease. A recently published study (while this manuscript was in 340 

preparation) described a new cellular platform that consists of iPSC-derived microglia, 341 

neurons and astrocyte tri-cultures (63) and have shown that HIV-1 infection of iPSC-342 

microglia in isolation or in tri-cultures resulted in production of pro-inflammatory 343 

cytokines including IL-1 and TNF. Though the mechanism of induction of pro-344 

inflammatory responses in HIV-1 infected microglia was not defined, inflammatory 345 

responses were suppressed upon treatment with RT inhibitor (efavirenz) (63). 346 

Differentiation protocols for iPSC-derived microglia in this recently published study (63) 347 

were similar to those utilized for generation of iCell-MG (iCell Microglia, FUJIFILM 348 

Cellular Dynamics) that we tested in this report. While the cytokine-driven differentiation 349 

protocol generated iPSC-microglia with similar transcriptional profiles to human primary 350 
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microglia (36, 63), our results suggest that iCell-MGs express low levels of P2RY12 on 351 

the cell surface, unlike primary human microglia (23, 41). Since the CNS environment is 352 

critical for establishing and maintaining microglial cell identity (64), co-culture-dependent 353 

terminal differentiation of iPSC-microglia, as described here and by Takata et al (39), 354 

may better model primary microglia in the brain.  355 

  356 

Impact of innate immune activation on homeostatic functions of microglia 357 

We have shown that HIV-1 infection of microglia promotes microglia cell death and pro-358 

inflammatory cytokine production in the hiMG–hiNeuron co-cultures (Figure 5), though 359 

significant cytotoxicity of co-cultured neurons was not observed at the time of harvest (6 360 

days p.i.). In contrast, a recent study using non-isogenic iPSC-derived microglia and 361 

neurons (from independent lines) demonstrated that infected microglia induce neuronal 362 

death, and damaged neurons induce activation of HIV-1 transcription in latently-infected 363 

microglia (65). These differences might be the result of divergent experimental setup, as 364 

hiMGs in this study were generated by co-culturing hiMACs and hiNeurons from the 365 

same iPSC-line, and infections of hiMGs were initiated in co-cultures. Further studies 366 

are needed to determine the effects of long-term co-culture of HIV-infected hiMGs and 367 

hiNeurons and the consequences of persistent HIV icRNA-induced chronic inflammation 368 

on neuronal homeostasis. It has been shown that activation of microglia leads to 369 

dysfunctions such as defects in clearing neurotoxins including fibrilar amyloid β and Tau, 370 

and promoting a senescent phenotype in microglia (reviewed in (14)). Inclusion of other 371 

cell types which have been reported to be HIV-1+ in the CNS such as astrocytes and 372 

perivascular macrophages (reviewed in (66)) in the hiMG–hiNeuron co-culture might 373 

better mimic the brain environment. In addition, human iPSC-derived cerebral organoids 374 
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with diverse cell types that interact in a 3D environment is an attractive model to study 375 

HIV neuropathogenesis in vitro (67). Future studies will need to assess the effects of 376 

persistent HIV-1 infection on homeostatic functions of microglia and contribution to 377 

neuronal dysfunction in these 3D cerebral organoid cultures. Finally, our findings 378 

highlight the urgent need to develop novel therapeutic strategies targeting cytosolic HIV 379 

icRNA expression to reduce HIV-induced neuroinflammation and incidence of HAND.   380 
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Materials and Methods 381 

Viruses 382 

HIV-1 replication competent molecular clones, Lai/YU-2env, single-round reporter virus 383 

constructs, Lai∆envGFP (GFP in place of the nef orf) and Rev-deficient Lai∆envGFP-384 

M10, have been described previously (8, 68, 69). Replication competent viruses were 385 

derived from HEK293T cells via calcium phosphate-mediated transient transfection (70). 386 

Single-round-replication-competent viruses pseudotyped with VSV-G were generated 387 

from HEK293T cells via co-transfection of HIV-1∆env proviral plasmids and VSV-G 388 

expression plasmid, and the packaging construct (psPAX2), if necessary (70). SIVmac 389 

Vpx containing VLPs were generated from HEK293T cells via co-transfection of SIV3+, a 390 

SIV packaging plasmid containing SIVmac239 Vpx (29), and VSV-G expression plasmid. 391 

Virus-containing cell supernatants were harvested 2 days post-transfection, cleared of 392 

cell debris by centrifugation (300 x g, 5 min), passed through 0.45 µm filters, and purified 393 

and concentrated by ultracentrifugation on a 20% sucrose cushion (24,000 rpm and 4˚C 394 

for 2 hours with a SW32Ti or SW28 rotor (Beckman Coulter)). The virus pellets were 395 

resuspended in PBS, aliquoted and stored at -80 °C until use. The capsid content of 396 

HIV-1 was determined by a p24gag ELISA (70) and virus titer was measured on TZM-bl 397 

by measuring -gal activity as previously described (71).  398 

 399 

Cell culture 400 

HEK293T (ATCC) and TZM-bl (NIH AIDS Reagent Program) were maintained in DMEM 401 

(Gibco) containing 10% heat-inactivated FBS (Gibco) and 1% pen/strep (Gibco) (37, 70, 402 

72). THP-1 (NIH AIDS Reagent Program) was maintained in RPMI1640 (Gibco) 403 

containing 10% FBS and 1% pen/strep (73). In some experiments, THP-1 cells were 404 
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stimulated with PMA (Sigma-Aldrich) for 48 hours at 100 nM. All cell lines have been 405 

tested for mycoplasma contamination and confirmed negative. Human iPSC-derived 406 

microglia were either purchased (iCell Microglia, FUJIFILM Cellular Dynamics) or 407 

generated by us (hiMG, see below). iCell Microglia (iCell-MG) were maintained per the 408 

manufacturer's instruction. All the reagents used to maintain iCell-MG are listed below: 409 

DMEM/F-12, HEPES no phenol red (Gibco, #11039021), B-27 supplement (Gibco, 410 

#17504044), GlutaMAX supplement (Gibco, #35050061), insulin-transferrin-selenium 411 

(Gibco, # 41400045), MEM non-essential amino acids (Gibco, #11140050), penicillin-412 

streptomycin (Gibco, #15140122), N-2 supplement (Gibco, #17502048), bovine serum 413 

albumin (Sigma-Aldrich, #A1470), recombinant human CD200 (ACRO Biosystems, 414 

#OX2-H5228), recombinant human IL-34 (PeproTech, #200-34), recombinant human 415 

fractalkine (PeproTech, #300-31), human insulin solution (Sigma-Aldrich, #I9278), 416 

human TGF-β1 (Miltenyi Biotec, #130-095-066), ascorbic acid (Sigma-Aldrich, #A8960), 417 

recombinant human M-SCF (PeproTech, #300-25), and 1-Thioglycerol (MTG) (Sigma-418 

Aldrich, #M6145). 419 

 420 

Generation of monocyte-derived microglia-like cells and macrophages  421 

To generate monocyte-derived microglia (MDMG), CD14+ peripheral blood monocytes 422 

positively-isolated with CD14 Micro Beads (Miltenyi Biotec) (68) were seeded on Geltrex 423 

(Gibco) coated tissue culture plates and cultured for 12-14 days in RPMI1640 Glutamax 424 

(Gibco) supplemented with 1% pen/strep, 100 µg/ml of IL-34 (Peprotech), and human 425 

GM-CSF (10 ng per ml, Miltenyi Biotec). Human monocyte-derived macrophages 426 

(MDMs) were derived from CD14+ peripheral blood monocytes by culturing in RPMI1640 427 

(Gibco) containing 10% heat-inactivated human AB serum (Sigma-Aldrich) and 428 
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recombinant human M-CSF (20 ng per ml; Peprotech) for 5-6 days and maintained in 429 

the same media. 430 

 431 

Generation of human iPSC-derived cells 432 

Human iPSCs were generated from human PBMCs by using the STEMCCA 433 

polycistronic lentiviral vector (74, 75) followed by the removal of integrated 434 

reprogramming cassette using Cre recombinase (76), and were maintained in mTeSR1 435 

media (STEMCELL Technologies). Human iPSC-derived primitive macrophages 436 

(hiMacs) were generated as previously reported (Figure 4A) (39). Briefly, human iPSC 437 

colonies were specified to the mesoderm, and induced into hemangioblast and toward 438 

hematopoietic precursors followed by differentiation into primitive macrophages by 439 

changing culture media every 2-4 days. After differentiation (Day 26), floating cells were 440 

collected and used for FACS as described below. In parallel, human iPSC-derived 441 

neurons (hiNeurons) were generated from the same batch of iPSCs as previously 442 

reported (39). Human iPSCs were dissociated to single cells, plated onto Matrigel-443 

coated 6 well plates, and differentiated into neuronal progenitors (NPCs). NPCs were 444 

terminally differentiated into hiNeurons. To generate iPSC-derived microglia cells 445 

(hiMGs), CD45+ CD11b+ CD163+ CD14+ CX3CR1+ hiMacs were sorted by FACS as 446 

described below and co-cultured with terminally differentiated hiNeurons for 14 days. All 447 

the reagents used to generate iPSC-derived cells are listed below: mTeSR (STEMCELL 448 

Technologies, #85850), ReLeSR (STEMCELL Technologies, #05872), DMEM/F-12, 449 

HEPES (Gibco, #11330057), IMDM (Gibco, #12440061), Stempro-34 SFM (Gibco, 450 

#10639-011), neurobasal (Gibco, #21103049), PBS (Gibco, #14190-144), Ham's F-12 451 

nutrient mix (Gibco, #11765054), N2 supplement  (Gibco, #17502048), B-27 452 
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supplement, serum free (Gibco, #17504044), B27 minus vitamin A (Gibco, #12587010), 453 

bovine albumin fraction V (7.5% solution) (Gibco, #15260037), primocin (InvivoGen, 454 

#ant-pm-2), GlutaMax (Gibco, #35050061), laminin (Gibco, #23017-015), Matrigel 455 

hESC-qualified matrix (Corning, #354277), Matrigel membrane matrix (Corning, 456 

#354234), poly-L-ornithine solution (Sigma-Aldrich, #P4957), laminin mouse protein, 457 

natural (Gibco, #23017015), human transferrin (Roche, #10-652-202-001), glutamic acid 458 

(Sigma-Aldrich, #G1251), ascorbic acid (Sigma-Aldrich, #A4544), SB431542 (Tocris, 459 

#1614), Y27632 (ROCK inhibitor) (STEMGENT, #04-0012-02), MTG (Sigma-Aldrich, 460 

#M6145), accutase (Gibco , #A1110501), polyornithine (Sigma-Aldrich, #P4957), 461 

CHIR99021 (Tocris, #4423/10), γ-secretase inhibitor XXI, compound E (Millipore, 462 

#565790), recombinant human BDNF (R&D Systems, #248-BD), recombinant human 463 

GDNF (R&D Systems, #212-GD), recombinant human BMP-4 (R&D Systems, #314-BP), 464 

recombinant human VEGF (R&D Systems, #293-VE), recombinant human EGF (R&D 465 

Systems, #236-EG), recombinant human FGF2 (R&D Systems, #233-FB), recombinant 466 

human SCF (R&D Systems, #255-SC), recombinant human DKK-1 (R&D Systems, 467 

#5439-DK), recombinant human IL-3 (R&D Systems, #203-IL), recombinant human IL-6 468 

(R&D Systems, #206-IL), and recombinant human M-CSF (R&D Systems, #216-MC). 469 

 470 

Infection  471 

Cells were spinoculated with HIV-1 (1h at RT and 1100 x g) at various multiplicity of 472 

infection (MOI, typically 0.5 to 2), cultured for 2-3 hours at 37˚C, washed to remove 473 

unbound virus particles, and cultured for 3-6 days. Infection was quantified by analyzing 474 

p24Gag released into the culture supernatants or GFP expression by flow cytometry (BD 475 

LSRII). In some experiments, cells were pretreated prior (at least 30 min) to infection 476 
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with efavirenz (1 µM, NIH AIDS Reagent Program), raltegravir (30 µM, Selleckchem), or 477 

treated 2-3 hours post infection (p.i.) with KPT-330 (1 µM, selinexor, Selleckchem), or 478 

KPT-335 (0.1 µM, verdinexor, Selleckchem). DMSO (Sigma-Aldrich) was used as a 479 

vehicle control. 480 

 481 

RNA analysis 482 

Total mRNA was isolated from 0.5-1x106 cells using an RNeasy kit (QIAGEN) and 483 

reverse-transcribed using oligo(dT)20 primer (Superscript III, Invitrogen). Target mRNA 484 

was quantified using Maxima SYBR Green (Thermo Scientific) using the following primer 485 

sets: P2RY12 (forward: 5'- CTTTCTCATGTCCAGGGTCAG-3', reverse: 5'- 486 

CTGCAGAGTGGCATCTGGTA-3') and GAS6 (forward: 5'- 487 

CCTTCCATGAGAAGGACCTCGT-3', reverse: 5'-GAAGCACTGCATCCTCGTGTTC-3'). 488 

Primer sequences for GAPDH, HIV spliced RNA and IP-10 were described previously 489 

(72). For hiMG-hiNeuron co-culture, target mRNA was quantified using TaqMan 490 

Universal PCR Master Mix (ThermoFisher Scientific) and the following primer/probe 491 

sets: Hs99999905_m1 (GAPDH), Hs01922583_s1 (CX3CR1), Hs01881698_s1 492 

(P2RY12), and Hs01881698_s1 (P2RY12). The CT value was normalized to that of 493 

GAPDH and represented as a relative value to a control using the 2-∆∆C
T method as 494 

described (72, 77). NanoSting analysis was performed using a human 495 

neuroinflammation kit and total RNAs (100 ng) isolated from MDMGs per the 496 

manufacturer's instruction. 497 

 498 

ELISA 499 
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IP-10 and CCL2 production in culture supernatants was measured with a BD Human IP-500 

10 ELISA Set and a BD Human MCP-1/CCL2 ELISA Set, respectively. To quantitate 501 

virus production, p24Gag in culture supernatants was quantified by in-house ELISA (8). 502 

 503 

Flow cytometry 504 

To sort CD45+ CD11b+ CD163+ CD14+ CX3CR1+ hiMacs, cells were stained with 505 

Fixable Viability Stain 780 (BD Bioscience, #565388) followed by staining with a PE-506 

conjugated mouse anti-human CD45 antibody (BD Biosciences, #555483, 1:10), an 507 

APC-conjugated anti-human CD11b antibody (BioLegend, #301410, 1:20), a BV421-508 

conjugated mouse anti-human CD14 antibody (BD Biosciences, #565283, 1:20), a 509 

FITC-conjugated mouse anti-human CD163 antibody (BD Biosciences, #563697, 1:20), 510 

and a PerCP/Cy5.5-conjugated anti-human CX3CR1 antibody (BioLegend, #341614, 511 

1:20) in the presence of human Fc blocker (BD Bioscience, #564220). Stained cells 512 

were sorted with Beckman Coulter MoFlo Astrios. To examine microglia activation, iCell-513 

MGs or hiMG–hiNeuron co-cultures were harvested with Cellstripper (Corning), stained 514 

with Zombie-NIR (BioLegend, #423105, 1:250) followed by staining with a BV421-515 

conjugated mouse anti-P2RY12 antibody (BioLegend, 1:50) in the presence of human 516 

Fc Blocker (BD Bioscience, #564220). Cells were fixed with 4% PFA (Boston 517 

Bioproducts) for 30 min, permeabilized with Perm/Wash (Invitrogen), and intracellular 518 

p24Gag expression was detected as described (72) using a FITC-conjugated mouse anti-519 

p24Gag monoclonal antibody (KC57, Coulter, # 6604665, 1:25). As for iCell-MGs, cell 520 

surface CD169 expression was also analyzed using a BV605-conjugated mouse anti-521 

CD169 antibody (BioLegend, 1:50). Intracellular tubulin β3 in the hiMG–hiNeuron co-522 

cultures were analyzed with an Alexa 549 or 647-conjugated mouse anti-tubulin β3 523 
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antibody (TUJ-1, BioLegend, 1:50). Cells were analyzed with BD LSRII (BD). Data was 524 

analyzed with FlowJo software (FlowJo). 525 

 526 

Imaging 527 

For MDMGs and iCell-MGs, cells cultured in coverslip chambers (LabTekII) were 528 

washed and fixed with 4% paraformaldehyde. Cells were then permeabilized with 0.1% 529 

TritonX100, and stained with a rabbit anti-P2RY12 antibody (Sigma-Aldrich, HPA014518, 530 

1:100), or a rabbit anti-IBA1 antibody (Fujifilm Wako, 019-19741, 1:250). Cells were then 531 

stained an Alexa594-conjugated anti-mouse-IgG antibody (Invitrogen, # A-11020, 1:200) 532 

and DAPI (Sigma-Aldrich). Cell were analyzed with a Nikon SP5 confocal microscope. 533 

hiMG-hiNeuron co-culture was fixed, permeabilized, and stained with an mouse anti-534 

beta-Tubulin III antibody (Clone TUJ1, STEMCELL Technologies, #60052, 1:1000), and 535 

a rabbit polyclonal anti-TMEM119 antibody (Novus Biologicals, #NBP2-30551, 0.25-2 536 

µg/mL), or a goat anti-IBA-1 antibody (Abcam, #ab5076, 1:500), followed by a Alexa 537 

Fluor 488-conjugated donkey anti-mouse IgG (Invitrogen, #A21202, 1:500) and an Alexa 538 

Fluor 594-conjugated goat anti-rabbit IgG (Invitrogen, #A11012, 1:500) or an Alexa Fluor 539 

594-conjugated rabbit anti-goat IgG (Invitrogen, #A11080, 1:500), respectively, and 540 

DAPI (NucBlue, Invitrogen). Cells were analyzed with a Keyence BZ-X710 All-in-one 541 

Fluorescence Microscope. Images were analyzed with ImageJ (NIH). 542 

 543 

Immunoblot Analysis  544 

To assess expression of host proteins, cell lysates containing 15-30 µg total protein 545 

were separated by SDS-PAGE, transferred to nitrocellulose membranes and the 546 

membranes were probed with the following antibodies: a mouse anti-SAMHD1 antibody 547 
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(Abcam, #ab67820, 1:1000) or a rabbit anti-phosphorylated (Thr 592) SAMHD1 antibody 548 

(Cell Signaling, #15038, 1:1000), and specific staining visualized with secondary 549 

antibodies, goat anti-mouse-IgG-DyLight 680 (Pierce) or a goat anti-rabbit-IgG-DyLight 550 

800 (Pierce). As loading controls, actin expression was probed using a rabbit anti-actin 551 

antibody (Sigma-Aldrich, A2066, 1:5000). Membranes were scanned with an Odessy 552 

scanner (Li-Cor). 553 

 554 

Statistics 555 

All the statistical analysis was performed using GraphPad Prism 8. P-values were 556 

calculated using one-way ANOVA followed by the Tukey-Kramer post-test (symbols for 557 

p-values shown with a line) or the Dunnett's post-test (comparing to mock), symbols for 558 

p-values shown on each column), One sample t-test (comparing two samples, symbols 559 

for two-tailed p-values shown with a line), or a Wilcoxon signed rank test (comparing two 560 

samples, symbols for two-tailed p-values shown with a line). Symbols represent, *: p < 561 

0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. No symbol: not significant (p ≥ 0.05). 562 

 563 

Data availability 564 

The authors declare that the data that support the findings of this study are available 565 
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Figure Legends 846 

Figure 1. Monocyte-derived microglia (MDMG) are susceptible to HIV-1 infection. 847 

(A) Schematic of MDMG differentiation protocol. (B) Representative image of MDMs or 848 

MDMGs differentiated from the same donor. Bars=20 µm. (C, D) Expression of (C) 849 

P2RY12 (D) GAS6 mRNA in MDMGs was quantified by qRT-PCR and normalized to 850 

that of MDM generated from the same donor. (E) Representative immunofluorescence 851 

images of MDMGs stained for nucleus (DAPI, blue) and P2RY12 or IBA-1 (red). Bar=20 852 

µm. (F) MDMGs were infected with Lai/YU-2env (replication competent CCR5-tropic 853 

HIV-1, MOI=1), and production of p24Gag in the culture supernatant was quantified by 854 

ELISA (3 dpi). (G) Western blot analysis for total SAMHD1, phosphorylated SAMHD1 855 

expression in MDMGs, MDMs and THP-1 cells. Actin was probed as a loading control. 856 

+: PMA-treated THP-1, -: unstimulated THP-1. (H) MDMGs and MDMs were infected 857 

with HIV-1 (Lai∆envGFP/VSV-G, MOI=2, in the absence or presence of SIVmac239 Vpx 858 

VLPs), and production of p24Gag in the culture supernatant was quantified by ELISA (3 859 

dpi). NT: no-treatment (DMSO), EFV: efavirenz (1µM), Ral: raltegravir (30 µM). The 860 

means ± SEM are shown and each symbol represents an independent experiment. P-861 

values: One-sample t-test (C, two-tailed), the Wilcoxon matched-pairs signed rank test 862 

(D, two-tailed), or one-way ANOVA followed by the Tukey-Kramer post-test (F) or the 863 

Dunnett's post-test comparing to mock (H). *: p < 0.05, **: p < 0.01, ***: p < 0.001. 864 

 865 

Figure 2. HIV-1 infection induces innate immune activation in MDMGs. 866 

(A) mRNA expression profiles in MDMGs infected with HIV-1 (Lai∆envGFP/VSV-G, 867 

MOI=2, in the presence of SIVmac239 Vpx VLPs) was analyzed using the human 868 

neuroinflammation panel (NanoString). Expression of mRNA in HIV-1-infected MDMGs 869 
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was normalized to that in mock-infected MDMGs (A),  in infected MDMGs in the 870 

presence of (B) efavirenz or (C) raltegravir, and genes which were expressed greater 871 

than the mean+ 2xSD are shown. (D) Production of IP-10 in HIV-1-infected MDMGs 872 

(MOI=2, 3 dpi) measured by ELISA. Effects of CRM1 inhibitor (KPT-330) on HIV-1-873 

infected MDMGs or infection of MDMGs with a Rev mutant deficient for icRNA nuclear 874 

export (Rev*: M10) on (E) viral infection (multiply-spliced viral RNA expression, Rev-875 

independent, shown as ∆CT to GAPDH), (F) p24Gag production (Rev-dependent) 876 

measured by ELISA, or (G) IP-10 mRNA expression (shown as ∆CT to GAPDH). The 877 

means ± SEM are shown and each symbol represents an independent experiment. P-878 

values: one-way ANOVA followed by the Dunnett's post-test comparing to mock (D-G). 879 

*: p < 0.05, **: p < 0.01, ****: p < 0.0001. NT: no treatment (DMSO), EFV: efavirenz (1 880 

µM), Ral: raltegravir (30 µM), KPT: KPT-330 (Selinexor, 1 µM), Rev*: M10. 881 

 882 

Figure 3. iPSC-derived microglia are highly susceptible to HIV-1 infection 883 

(A) Representative phase-contrast images of iCell-MGs (FUJIFILM Cellular Dynamics). 884 

Bar=20 µm. (B) Representative immunofluorescence image of iCell-MGs stained for 885 

nucleus (DAPI, blue) and IBA-1 (red). Bar=20 µm. (C) Representative flow cytometry 886 

profile of iCell-MGs stained for intracellular and surface P2RY12. (D) Western blot 887 

analysis for total SAMHD1, phosphorylated SAMHD1 expression in iCell-MGs, MDMGs, 888 

and MDMs. Actin was probed as a loading control. (E) Replication kinetics of HIV-1 in 889 

iCell-MGs. Cells were infected with HIV-1 (Lai/YU-2env, replication competent CCR5 890 

tropic HIV-1, MOI=1), and production of p24Gag in the culture supernatant was quantified 891 

by ELISA. (F-J) iCell-MGs were infected with HIV-1 (Lai/YU-2env, MOI=1), and (F) HIV-892 

1 infection (intracellular p24Gag expression) and (G, H) CD169 expression were analyzed 893 
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by flow cytometry. Production of proinflammatory cytokines (I) IP-10 and (J) CCL2 in the 894 

culture supernatants was measured by ELISA (6 dpi). The means ± SEM are shown and 895 

each symbol represents an independent experiment. P-values: one-way ANOVA 896 

followed by the Dunnett's post-test comparing to mock (F, H-J), *: p < 0.05, **: p < 0.01, 897 

***: p < 0.001, ****: p < 0.0001. NT: no treatment (DMSO), EFV: efavirenz (1 µM), Ral: 898 

raltegravir (30 µM), Ver: verdinexor (KPT-335, 0.1 µM). 899 

 900 

Figure 4. Establishment of iPSC-derived microglia/neuron co-culture system. 901 

(A) Schematic of hiMG generation by co-culturing hiMAC (yolk-sac-derived primitive 902 

macrophages) and neurons from human iPSCs. (B) Representative phase-contrast 903 

image of hiMGs and hiNeurons co-cultured for 11 days. Bar=50 µm (C-E) Expression of 904 

(C) TMEM119, (D) CX3CR1, and (E) P2RY12 mRNA in hiMACs or hiMG–hiNeuron co-905 

cultures was quantified by qRT-PCR and normalized to that of hiNeuron solo culture. P-906 

values from one-way ANOVA test for C, D and E were 0.0972, 0.0829, and 0.0814, 907 

respectively. (F) Representative immunofluorescence images of hiMG–hiNeuron co-908 

cultures stained for nucleus (DAPI, blue), neuron (tubulin beta 3: TUBB3, green) and 909 

MG markers IBA-1 or TMEM119 (red). Bars=50 µm. (G) Representative flow cytometry 910 

profile of hiMG–hiNeuron co-culture stained for neurons (TUBB3) and hiMGs (P2RY12). 911 

The means ± SEM are shown and each symbol represents an independent experiment. 912 

 913 

Figure 5. HIV-1 infection of hiMGs in hiMG–hiiNeuron co-cultures induces pro-914 

inflammatory responses. 915 
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hiMG–hiNeuron co-cultures were infected with HIV-1 (Lai/YU-2env: replication 916 

competent CCR5 tropic HIV-1, MOI=1). (A, B) HIV-1 infection (intracellular p24Gag 917 

expression) was analyzed by flow cytometry. (A) Representative flow cytometry profile is 918 

shown, and microglia (P2RY12+) and neuron (P2RY12-) populations are highlighted with 919 

pink and blue, respectively. (B) HIV infected (p24Gag+) cells in microglia (pink in A) were 920 

calculated. (C) Replication kinetics of HIV-1 in hiMG–hiNeuron co-culture. Co-cultures 921 

were infected with HIV-1 (Lai/YU-2env, replication competent CCR5 tropic HIV-1, 922 

MOI=1), and production of p24Gag in the culture supernatant was quantified by ELISA. 923 

Production of proinflammatory cytokines (D) IP-10 and (E) CCL2 was measured by 924 

ELISA (6 dpi). Proportion of live cells in (F) microglia (pink in A) and (G) neurons (blue in 925 

A) was calculated. The means ± SEM are shown and each symbol represents an 926 

independent experiment. P-values: one-way ANOVA followed by the Dunnett's post-test 927 

comparing to mock (B, D-F), **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. P-value from 928 

one-way ANOVA test was 0.9662 for G. NT: no-treatment (DMSO), EFV: efavirenz (1 929 

µM), Ral: raltegravir (30 µM), KPT: KPT-330 (selinexor, 1 µM). 930 

 931 
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