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Melanoma is the most aggressive skin malignancy with
increasing incidence worldwide. Pannexinl (PANX1), a
member of the pannexin family of channel-forming glyco-
proteins, regulates cellular processes in melanoma cells
including proliferation, migration, and invasion/metastasis.
However, the mechanisms responsible for coordinating and
regulating PANX1 function remain unclear. Here, we
demonstrated a direct interaction between the C-terminal re-
gion of PANX1 and the N-terminal portion of B-catenin, a key
transcription factor in the Wnt pathway. At the protein level,
B-catenin was significantly decreased when PANX1 was either
knocked down or inhibited by two PANX1 blockers, Proben-
ecid and Spironolactone. Immunofluorescence imaging
showed a disrupted pattern of B-catenin localization at the cell
membrane in PANXI-deficient cells, and transcription of
several Wnt target genes, including MITF, was suppressed. In
addition, a mitochondrial stress test revealed that the meta-
bolism of PANXI1-deficient cells was impaired, indicating a
role for PANX1 in the regulation of the melanoma cell
metabolic profile. Taken together, our data show that PANX1
directly interacts with P-catenin to modulate growth and
metabolism in melanoma cells. These findings provide mech-
anistic insight into PANX1-mediated melanoma progression
and may be applicable to other contexts where PANX1 and B-
catenin interact as a potential new component of the Wnt
signaling pathway.

Pannexin 1 is a member of a glycoprotein family (PANX 1, 2,
and 3) that oligomerizes to establish large pore channels between
the intracellular and extracellular space for cell communication
(1-3). Among Pannexins, PANX1 has been the primary focus of
research because of its widespread expression (4). PANX1 me-
diates the release of small signaling molecules, such as adenosine
tri-phosphate (ATP) (5). Additionally, intracellular PANX1 has
been reported to function as a calcium leak channel in the
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endoplasmic reticulum (6, 7). PANX1 plays an important role in
normal physiological processes, including skin development and
wound healing as well as in pathophysiological conditions and
metabolic disorders, such as Alzheimer’s disease, diabetes,
inflammation, and cancer (8, 9). Melanoma is the most aggres-
sive form of skin cancer with increasing incidence worldwide
(10). There is growing interest in investigating the role of
PANX1 in the regulation of cellular processes, such as prolifer-
ation, migration, differentiation, and invasion during melanoma
tumorigenesis (11, 12). Currently, our understanding of the
mechanisms through which PANX1 regulates cellular processes
and the metabolic profile of melanoma cells is very limited.
However, our recent findings indicate that knocking down (KD)
PANX1 with shRNA in aggressive BL6 mouse melanoma cells,
as well as in human melanoma cell lines, reduces the abundance
of B-catenin (11, 12), a key transcription factor in the Wnt
signaling pathway implicated in melanoma tumorigenesis (13).
Wnt/B-catenin signaling regulates proliferation, migration, and
invasion of melanoma cells (14-16). Additionally, immune
evasion is a hallmark of melanoma progression (17), and active
[-catenin signaling within melanoma tumor cells suppresses the
recruitment of immune cells and contributes to melanoma im-
mune evasion (18). Of note, P-catenin modulates aerobic
glycolysis and regulates cancer cell metabolism (19), which may
be an additional role of Wnt/B-catenin pathway in melanoma
tumorigenesis. We postulated that PANX1 regulates melanoma
cell metabolic profile, proliferation, and migration in part
through cross talk with the Wnt signaling pathway. Here we
showed that, PANX1 binds directly via its C-terminal region to
[-catenin. Blocking or reducing PANXI1 in melanoma cells de-
creases the levels of B-catenin and suppresses [-catenin tran-
scriptional activity. Moreover, depletion of PANX1 attenuated
the mitochondrial respiratory activity of melanoma cells. Our
findings underline the molecular mechanisms through which
PANX1 regulates melanoma tumorigenesis and suggests that
PANXI1 may be a new interactor in the Wnt signaling pathway
and can potentially be a target for the treatment of malignant
melanoma.
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Results
Pannexin 1 associates with B-catenin in melanoma cells

To determine whether there is an interaction between
PANX1 and B-catenin in melanoma cells, we first analyzed a
panel of melanoma biopsies from the Cancer Genome Atlas
(TCGA) and found a modest, yet significant, correlation be-
tween PANX1 and p-catenin mRNA (CTNNBI) in 471 pa-
tients with malignant melanoma (Fig. 1A, left panel). To
investigate whether this correlation is restricted to melanoma
or applies to other types of cancers, we analyzed TCGA data of
1108 biopsies taken from patients with breast cancer. We
observed that, similar to melanoma, mRNA expression of
PANX1 significantly correlates with that of B-catenin (Fig. 14,
right panel). Of note, both PANX1 and p-catenin have been
implicated in survival of metastatic breast cancer cells and
poor patient outcome (20, 21). Next, we evaluated the asso-
ciation of PANX1 and p-catenin in the melanoma cell envi-
ronment. We assessed several human melanoma cell lines with
transcriptional profiles similar to melanoma tumors (22) for
their PANX1 expression (Fig. 1B). We observed that PANX1 is
expressed in all cell lines tested but most abundant in
131/4-5B1 cells at both the protein and mRNA levels (Fig. 1,
B and C). A375-P cells with PANX1 knockdown were used to
validate the specificity of the antibody. We chose 131/4-5B1
cells to conduct immunoprecipitation studies, incubating
protein lysates with specific antibodies against the carboxyl
terminal region of PANXI1. Endogenous PANXI1 co-
immunoprecipitated (co-IP) with p-catenin in 131/4-5B1
human melanoma cells (Fig. 1D, left panel). In contrast, no
[B-catenin precipitated with rabbit IgG, validating the speci-
ficity of the interaction (Fig. 1D, left panel). Reciprocal analysis
revealed that endogenous PANXI1 specifically co-IP with
endogenous B-catenin from 131/4-5B1 human melanoma cells
(Fig. 1D, middle panel).

PANX1 has been shown to act as a Ca®*-permeable channel
at the endoplasmic reticulum (6, 7), providing a pathway for
intracellular Ca** diffusion that controls several physiological
processes from proliferation to apoptosis (5). The molecular
nature and mechanism of this particular function of PANX1
are poorly understood. Many signaling pathways initiated by
the rise in intracellular Ca®* are mainly mediated by calmod-
ulin, the master regulator of Ca>* signaling in all eukaryotic
cells (23). Calmodulin binds to several connexin forming gap
junctions and modulates their functions in cell-to-cell transfer
of metabolites (24—26). Given the similarity of connexin and
pannexin structure, we investigated whether calmodulin in-
teracts with PANX1 in melanoma cells. We immunoprecipi-
tated PANX1 from A375-P and A375-MA2 cells in the
presence of Ca®* (Fig. 1E, Fig. S14). Calmodulin co-IP with
PANX1 in a Ca®*-dependent manner (Fig. 1E, left panel,
Fig. S1A). The interaction between calmodulin and PANX1 in
melanoma cells represents an additional layer of complexity in
the modulation of Ca** signaling through PANXI.

It is not possible to establish from the data shown in
Figure 1D, whether PANX1 and [-catenin bind directly or
through a protein complex. To address this question, we
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performed an in vitro analysis using a transcription and
translation (TyT) system and purified recombinant proteins.
Selected regions of PANX1 (Fig. 2A, schematic) were
expressed using the T\T and labeled with [3*S]methionine.
The PANXI1 constructs were incubated with Maltose-Binding
Protein (MBP)-tagged p-catenin. After washing, complexes
were resolved by SDS-PAGE, and gels were dried and pro-
cessed by autoradiography. Analogous to findings with co-IPs
(Fig. 1D), full-length PANX1 binds directly to purified B-cat-
enin in vitro (Fig. 2B, left blot). Analysis of two fragments of
PANX1 revealed minimal binding of the middle segment (M)
of PANXI1 (amino acids 128—203) to B-catenin (Fig. 2B, middle
blot and Fig. 2C). In contrast, amino acids 288 to 426, which
constitute the C-terminal segment (C) of PANXI1, exhibit
robust binding to B-catenin (Fig. 2B, right blot, and Fig. 2C).
Binding specificity was confirmed by the absence of bands
from samples incubated with MBP alone (Fig. 2, B and C). The
expression levels of TyT products were comparable among
samples (Fig. 2B). We investigated whether the C-terminal
region of PANX1 (aa 288-426) is homologous to any other
proteins. The results using NCBI blast analysis revealed that
the 138 aa in the C-terminus region of PANX1, where p-cat-
enin binds, is specific to PANX1 among different species
(Fig. S2).

In addition, we conducted in vitro assays to identify the
region of -catenin where PANX1 binds. We conducted pull-
down assays using selected P-catenin fragments, namely the
N-terminal (amino acids 1-137), middle and C-terminal
(amino acids 138781, termed R1) and the C-terminal (amino
acids 666-781) regions of p-catenin. His-tagged purified
fragments of pB-catenin were incubated with lysates of
HEK293 cells expressing myc-PANX1-C. Complexes were
isolated using Talon Metal Affinity Resin. PANX1 binds
exclusively to the N-terminal region of -catenin (amino acids
1-137) (Fig. 2, D and E). No binding is detected to the R1 or C
constructs of B-catenin or to Talon beads alone. Collectively,
these data demonstrate that the C-terminal region of PANX1
binds to the N-terminal portion of f-catenin.

B-Catenin is reduced in PANX1-deficient melanoma cells

To investigate the effect of PANX1 on B-catenin function in
melanoma cells, we generated PANX1 knockout (PANX1 KO)
A375-P and A375-MA2 cells using the CRISPR/Cas9 system.
A double nicking strategy was employed to reduce the likeli-
hood of off-target effects. In this method, paired guide RNAs
with the ability to cleave single strands were used, which
resulted in specific double-strand breaks within the PANX1
gene. Western blotting confirmed the loss of PANX1 expres-
sion (Fig. 3A). Deletion of the PANXI gene from A375-P
and A375-MA2 cells caused a substantial reduction in the
abundance of [-catenin and its downstream effector
Microphthalmia-Associated Transcription Factor (MITF,
Fig. 3A). Since the growth rate of PANX1 knockout cells in
culture was severely reduced and cells were difficult to main-
tain for experimental procedures, we knocked down PANX1 in
A375-P cells using shRNA. The levels of PANX1 mRNA in
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Figure 1. PANX1 associates with B-catenin in melanoma cells. A, analysis of PANX1 and B-catenin (CTNNB1) mRNA expression in melanoma and breast
carcinoma in the Cancer Genome Atlas (TCGA) database revealed that there is a modest yet significant correlation between PANX1 and B-catenin mRNA
expression levels in melanoma (left panel) and breast cancer (right panel). B, western blot of PANX1 protein expression among several malignant human
melanoma cell lines showing abundant PANX1 expression in all cell lines, especially in 131/4-5B1 cells. Banding pattern of PANX1 shows different
glycosylation states (Gly0, Gly1, and Gly2). A375-P cells transfected with shRNA against PANX1 (shPANX1-A375-P) were used as control to confirm antibody
specificity. GAPDH was used as loading control. C, total RNA was extracted from the indicated cell lines. Human PANX1 mRNA was measured by quantitative
RT-gPCR. The amount of mMRNA was corrected to house-keeping gene (YWHAZ) as control in the same sample. Levels of mRNA in the A375-P cells were set
to 1. The data represent the mean + S.E. (error bars) of at least three independent experiments, each performed at least in three technical replicates (N = 3,
n = 3). Statistical analysis conducted using one-way ANOVA with Tukey post hoc test ***p < 0.001, ****p < 0.0001. D, equal amounts of protein lysate (1 mg)
from 131/4-5B1 cells were immunoprecipitated (IP) with anti-PANX1 (left panel) or anti-B-catenin antibodies (middle panel). Immuno-complexes were
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cells transfected with control shRNA were comparable with
those in nontransfected A375-P cells (Fig. 3B). In contrast,
PANX1 mRNA in cells that were transfected with either of two
different shRNA constructs against PANX1 (PANX1shRNA-B
and D) was 3.2 = 0.04-fold lower than control cells (Fig. 3B).
Similarly, the amount of PANX1 protein was decreased by
4.2 + 0.02-fold compared with control samples (Fig. 3, C and
D, left panel). Analogous to our observations with PANX1 KO
cells, the abundance of B-catenin was significantly reduced in
PANX1 knockdown melanoma cells (Fig. 3, C and D, right
panel). To evaluate whether loss of PANXI1 affects the -cat-
enin mRNA, we performed quantitative RT-qPCR. A375-P
cells transfected with shRNA against [3-catenin were used as
control (Fig. 3E). Levels of B-catenin mRNA among non-
transfected, control shRNA and PANX1 shRNA transfected
A375-P cells were comparable (Fig. 3E). These data indicate
that PANX1 likely contributes to the posttranscriptional
modification and/or stability of B-catenin protein in melanoma
cells and does not have a significant impact on p-catenin
mRNA levels.

Next, we validated our findings by immunofluorescence
analysis in PANX1-deficient melanoma cells. In cells trans-
fected with control shRNA, B-catenin is abundant at the cell
membranes where it partially colocalizes with membrane-
bound PANX1 (Fig. 3F). In contrast, in PANX1-deficient
cells, PANX1 is decreased and less abundant at the cell sur-
face and areas of cell-cell contact. In addition, the pattern of
B-catenin staining at cell borders is also irregular and dis-
rupted when PANX1 is reduced in melanoma cells (Fig. 3F).

MITF is a melanocyte lineage-specific transcription factor
that is linked to plasticity of melanoma cells and has key roles
in proliferation, migration, and invasiveness of melanoma cells
(27, 28). The promoter of human and mouse Mitf-M, a specific
isotype in melanocytes, contains B-catenin-binding sites (29).
To assess the effect of reduced p-catenin on MITF expression
in PANX1-deficient and knockout cells, we performed western
blotting (Fig. 3, A and C). MITF protein was significantly
reduced in PANX1-deficient melanoma cells (Fig. 3, C and G).
Similarly, qPCR analysis revealed a significant reduction in the
mRNA of MITF when PANX1 is knocked down in A375-P
cells (Fig. 3G). MITF expression is modulated through p-cat-
enin and another key effector in the Wnt pathway called
lymphoid enhancer-binding factor 1 (LEF1) in melanoma cells
(30-32). Moreover, MITF can cooperate with LEF1 as a
coactivator to enhance its own expression (32). Additionally,
LEFI has been reported as a Wnt/B-catenin target gene in
several cell lines (33-35), including melanoma (36-38). LEF1
mRNA was significantly reduced when we knocked down
PANX1 in A375-P melanoma cells (Fig. 3G). In addition,
mRNA levels of Axin2, which is a common [-catenin target

gene, were substantially reduced upon PANX1knockdown but
did not reach statistical significance (Fig. 3G).

Wnt/p-catenin signaling is a major regulator of melanoma
proliferation (16, 39, 40). In agreement with this notion,
PANX1-deficient A375-P cells showed significantly decreased
growth rate compared with control cells starting 2 days after
seeding (Fig. 3H). These results demonstrate that expression of
several key effectors of the Wnt signaling pathway, including
[-catenin, is reduced in PANX1-deficent melanoma cells.

B-Catenin regulates PANX1 expression in melanoma cells

The effect of SARNA knockdown (KD) of B-catenin on the
expression of PANX1 in melanoma cells was evaluated in
A375-P cells. Western blotting and qPCR confirmed reduced
[-catenin protein (Fig. 44) and mRNA levels (Fig. 4B) after B-
catenin shRNA KD, as expected. Interestingly, the levels of
both PANX1 protein and mRNA were substantially reduced in
[-catenin-deficient melanoma cells (Fig. 4, A and C). The 1.9-
fold decrease in PANX1 mRNA when [-catenin was knocked
down was the same as knocking down PANX1 using PANX1
shRNA (Fig. 4C). Knocking down p-catenin in melanoma cells
also reduced MITF mRNA by 2.8-fold (Fig. 4D). The role of
Wnt/p-catenin/MITF pathway in melanoma cell proliferation
is well established (27, 30). In agreement with this fact, there
was a significant reduction in the growth rate of A375-P cells
with B-catenin knockdown (Fig. 3E). The effect of -catenin
reduction on PANX1 subcellular localization was investigated
using immunofluorescence analysis (Fig. 4F). Our findings
suggest that in B-catenin knocked down A375-P cells, PANX1
is reduced, particularly in its localization at the cell surface and
areas of cell-cell contact, and shows a diffuse intracellular
distribution (Fig. 4F).

Long-term exposure to PANX1 blockers decreases the
abundance of PANX1 and B-catenin in melanoma cells

We previously reported that long-term exposure to PANX1
channel blockers, namely Carbenoxolone (CBX) and Proben-
ecid (PBN), reduces the growth rate of melanoma cells evident
after 3 days in culture (11), a phenotype that is also observed in
cells with depleted PANX1 protein (Fig. 3H). To assess the
effect of long-term exposure to PANX1 blockers, we incubated
A375-MA2 cells with PBN for 72 h. Quantification revealed
that PBN decreases protein levels of both PANX1 (by 20%) and
[-catenin (by 30%) (Fig. 5, A and B). Spironolactone (SPL) was
recently shown to specifically block PANX1 (41). Incubation of
highly invasive 131/4-5B1 melanoma cells with either PBN or
SPL markedly reduced cytoplasmic levels of both PANX1 and
B-catenin (Fig. 5, C and D). SPL caused about 37% =+ 11
reduction in PANX1 and 47% + 8 reduction in B-catenin levels
(Fig. 5, C and D). qPCR showed that neither PBN nor SPL

analyzed by SDS-PAGE. Lysates directly obtained from cells were loaded directly onto the gel (Lysate, right panel). Rabbit or mouse IgG antibodies were used
as negative controls. Blots were probed with anti-PANX1 and anti-B-catenin antibodies. GAPDH was used as loading control. All data are representative of at
least three independent experiments. Data show that PANX1 and {-catenin associate with each other in melanoma cells. £, equal amounts of protein lysate
(1 mg) from A375-P cells were obtained with lysis buffer containing either 1 mM CaCl2 (+) or 1 mM EGTA (-). Lysates were immunoprecipitated (IP) with
anti-PANX1 antibodies. Immune complexes were analyzed by SDS-PAGE. Blots were probed with anti-PANX1 and anti-calmodulin (CaM) antibodies (left
panel). Mouse IgG antibodies were used as negative controls. Lysates directly obtained from cells were loaded onto the gel (Lysate, right panel). GAPDH was

used as loading control.
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Figure 2. C-terminal region of PANX1 binds directly to N-terminal region of B-catenin. A, schematic representation of PANX1 full-length (FL) and
fragments M (red) and C (blue). The specific amino acid residues in each construct are indicated. B, ?°SImethionine-labeled PANX1 fragments generated by
TnT quick coupled transcription/translation system (Promega) and were incubated with equal amounts of maltose-binding protein (MBP)-B-catenin or MBP
alone. Samples were resolved by SDS-PAGE. The gels were cut at the 75 kDa region and the upper portion was stained with Coomassie Blue (upper panel).
The bottom portion of the gel was dried and analyzed by autoradiography (lower panel). “Input” depicts 5% of the T\T peptides used for the assay. The data
are representative of at least three independent experiments. C, quantifications of blots in (B) using Image Studio V. 5.2. Data are normalized to the input
and B-catenin sample in PANX1-C was set to 1. N = 3. Statistical analysis conducted using one-way ANOVA with Tukey post hoc test ***p < 0.001. Data
reveal that B-catenin directly binds to C-terminal region of PANX1. D, HEK293 cells were transfected with pcDNA3-myc-PANX1-C and lysed. Equal amounts
of protein lysate were incubated with His-tagged portions of 3-catenin (attached to Talon beads), namely N (AA 1-137), R1 (AA 138-781), or C (AA 666-781),
or with Talon beads alone (TB, negative control). 1% of the lysate was loaded directly onto the gel (Input). Samples were resolved by SDS-PAGE and gels
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significantly altered PANX1 mRNA (Fig. 5E, left panel), which
suggests that long-term exposure to blockers likely affects
PANXI1 at the protein level.

Treatment with PBN but not SPL reduced the P-catenin
mRNA levels (Fig. 5E, right panel), suggesting that PBN likely
suppresses [-catenin not only through reduction of PANX1
but also through inhibition of B-catenin mRNA transcription.
Immunofluorescence analysis of A375-P cells demonstrated
that both CBX and PBN reduce PANX1 levels and localization
at the cell membrane (Fig. 5F) and altered the cell membrane
localization of B-catenin (Fig. 5F, insets) in a manner similar to
either PANX1 or B-catenin knockdown cells (Figs. 3F, 4F and
5E). Interestingly, 72 h exposure to CBX and PBN also alters
calmodulin subcellular localization in melanoma cells causing
more accumulation of calmodulin around nuclear compart-
ments (Fig. S1B). Given the association of PANXI1 and
calmodulin (Fig. 1E, Fig. S1A), it is likely that depletion of
PANX1 alters the subcellular localization of its binding part-
ners, including calmodulin. Overall, our findings suggest that
long-term exposure to PANX1 blockers reduces PANX1 and
[-catenin proteins and changes their subcellular localization in
melanoma cells.

PANXT1-deficient melanoma cells have impaired metabolic
activity

The role of Wnt signaling in controlling cancer metabolism
is well established (19). The Wnt pathway is implicated in the
regulation of bioenergetics in melanoma cells in a B-catenin-
dependent manner (42). We hypothesized that reduction of
PANX1 and consequently B-catenin would alter the metabolic
profile of melanoma cells. To investigate the real-time effect of
PANX1 knockdown on mitochondrial activity, oxygen con-
sumption rate (OCR) of cells transfected with shRNA against
PANX1 was measured using a mitochondrial stress test with a
Seahorse XF analyzer (Fig. 6A). PANXI-deficient cells
exhibited significantly lower basal respiration than cells
transfected with control shRNA (Fig. 6B, left panel). Further-
more, following the injection of carbonyl cyanide-4 (tri-
fluoromethoxy) phenylhydrazone (FCCP), an electron
transport chain uncoupling agent, maximal respiration
(Fig. 6B, middle panel) and spare respiratory capacity (Fig. 65,
right panel) were also decreased in PANX1 knockdown cells.
These results suggest that PANX1-deficient cells exhibit sup-
pressed mitochondrial metabolism, which may explain
reduced proliferation and the previously reported reduction in
the migration of these cells (11).

Discussion

Since the discovery of PANX1 by Panchin et al. in 2000 (4:3),
a growing body of evidence is showing key roles for PANX1 in
the regulation of cancer progression (44). Originally consid-
ered as a channel-forming protein at the cell surface to

facilitate the release of ATP (5), PANX1 has been predomi-
nantly studied as a cell-membrane-associated channel protein,
and potential roles of intracellular PANX1 are less character-
ized. However, recent findings indicate a signaling role for
intracellular PANX1 through its interaction with a variety of
cytoplasmic proteins and signaling molecules, such as
collapsing response mediator protein 2 (45), actin and actin-
interacting protein Arp3 (46), and inflammasome compo-
nents including caspase-1, XIAP, and ASC (47, 48). Here we
demonstrate that PANX1 binds directly to the Wnt pathway
transcription factor, P-catenin. Further, we propose that
PANX1 likely contributes to the stability of B-catenin protein
in melanoma cells through modulation of -catenin protein
levels and regulates p-catenin transcriptional activity in these
cells. Our findings provide a mechanistic insight into the role
of PANX1 in regulation of cellular processes, such as prolif-
eration, migration, and invasion during melanoma
progression.

The evolutionarily conserved Wnt/p-catenin pathway con-
trols diverse and varied processes contributing to cellular
functions and tissue homeostasis (49). The tight control over
the functions of Wnt/B-catenin pathway is highly dependent
on its interactome (50). For example, several actin-related
molecules, such as adenomatous polyposis coli (APC),
directly bind to B-catenin and modulate its function (51). Our
study indicates that PANX1 associates with B-catenin in the
melanoma cell milieu. Immunofluorescence imaging reveals
areas of PANX1 and f-catenin colocalization at cell membrane
as well as intracellularly (Figs. 3F and 4F). In-depth analysis of
possible intracellular interactions between PANX1 and p-cat-
enin will provide better understanding of PANX1-mediated
signaling. An important finding in our study is a direct inter-
action between PANXI1 and B-catenin. Binding to B-catenin is
mediated through the C-terminal region of PANX1, which has
been shown to interact with actin and actin-interacting protein
Arp3 (46, 52). Also, PANX1 binds to the N-terminal region of
B-catenin, which harbors almost all the carcinogenic muta-
tions that have been identified in B-catenin (53). Thus, binding
of PANX1 to the N-terminal portion of B-catenin may have
critical impact on [-catenin structure and function. Overall,
our findings establish PANX1 among a plethora of -catenin-
binding partners that either directly affect its transcriptional
activity or allow its direct cross talk with other signaling
effector molecules.

In a spontaneous melanoma mouse model with melanocyte-
specific Pten-inactivation and the Braf'®°*F-activating muta-
tion, loss of B-catenin inhibits melanoma formation and sup-
presses the ability of melanoma tumor to metastasize to distant
organs (54). Also, active B-catenin signaling inside melanoma
tumors dominantly excludes T-cell infiltration into the mela-
noma microenvironment, thus preventing antitumor immune
response (18). We have shown that the abundance of B-catenin
decreases substantially upon PANX1 depletion from both

were cut at ~25 kDa. The lower portion of the gels was transferred to PVDF and probed with anti-myc antibodies to detect PANX1-C (WB). The upper portion
of the gel was stained with Coomassie blue. Data are representative of four independent experiments. E, quantifications of blots in (D) using Image Studio V.
5.2. Data are normalized to the input. N = 4. Statistical analysis conducted using one-way ANOVA with Tukey post hoc test *p < 0.05.
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mouse (12) and human melanoma cells (Fig. 3). In addition,
two Wnt/p-catenin target genes were significantly reduced,
namely MITF and LEF1I, as well as Axin2, a common [-catenin
target gene, was reduced upon PANX1 knock-down by 2.4, 2.2,
and 3.4-fold, respectively (Fig. 3). Both MITF and LEF1 have
been implicated in melanoma survival and resistance (28, 55).
Furthermore, PANX1 inhibition is associated with significant
reduction in tumor growth (11, 12) and distant metastasis
tested in our ex vivo model of chick chorioallantoic membrane
(chick —CAM) (12). Thus, PANX1 likely regulates formation
and metastasis of melanoma tumor in cross talk with Wnt/f3-
catenin pathway.

Stabilization of B-catenin (e.g;, through phosphorylation on
exon 3) is an alternative way for increasing its activity, which
can happen even without signaling inputs from Wnt ligands
(56-58). Our data indicate that loss of PANX1 does not
change B-catenin mRNA, suggesting that PANX1 may alter
the stability of B-catenin at the protein level. Additionally, two
specific PANX1 blockers tested in our study significantly
reduce the abundance of both PANX1 and p-catenin proteins
in melanoma cells. In agreement with that notion, one recent
study has shown that the PANX1 blocker, PBN, reduces
PANXI1 and p-catenin levels in breast cancer cells and sup-
presses their invasiveness and metastatic potential (59). These
findings support our previously published data showing that
PANX1 blockers reduce invasiveness and metastatic capacity
of melanoma cells (11, 12). Together, we identified the FDA-
approved PANX1 inhibitors as repurposed drugs that could
potentially be used in clinical settings for diseases with altered
PANX1-mediated B-catenin signaling.

In the canonical Wnt signaling, pathway is activated mainly
via Wnt3a binding to the FZD/LRP receptor, leading to
disruption in the “destruction complex” and consequently (-
catenin translocation to the nucleus, which activates tran-
scription of Wnt target genes (13). In contrast, when Wnt
signaling is OFF, the destruction complex is stabilized, which
contains several interactor molecules that contribute to [-
catenin posttranslational modification (mainly phosphoryla-
tion and ubiquitin-mediated degradation), thereby attenuating
transcription (60). Changes in subcellular localization of [3-
catenin are an important step in the regulation of transcrip-
tional activity (61). Notably, our findings show that -catenin
does not associate with the cell membrane in the absence of
PANX1 (Fig. 3F). Dissociation of B-catenin from the cell
border is likely to increase the exposure of cytoplasmic [3-
catenin to degradation, which is an important regulatory
mechanism of Wnt/B-catenin in cancer (50). In melanoma

cells, B-catenin increases proliferation and growth through
interaction with Brn2 transcription factor (39). Similar to our
observation with PANX1-deficient cells, knocking down pB-
catenin significantly decreased the growth rate of melanoma
cells in our experimental setting (Fig. 4), confirming the key
role of B-catenin in melanoma cell homeostasis.

The association of PANX1 with its binding partners is
modulated through signaling inputs among which Ca** is of
great importance. Our data established that the interaction of
endogenous PANX1 with calmodulin, a master regulator of
Ca®* signaling in eukaryotic cells, is regulated through Ca**.
Therefore, it is reasonable to postulate that Ca* alters the
PANX1 interactome, regulating the PANXI1-mediated
signaling network. Recent studies have shown the role of
noncanonical Wnt5A-mediated signaling in melanoma
cellular processes through calcium-dependent enzymes (62).
Thus, depending on the context, both canonical and nonca-
nonical Wnt signaling contributes to melanoma proliferation,
migration, and invasion (40). Our data showing the interaction
of PANXI1 with B-catenin and calmodulin provide a hint to a
potential role for PANX1 in both canonical Wnt3a/p-catenin-
dependent and noncanonical Wnt5a/Ca®* signaling.

In a context-dependent cross talk with Ca®* signaling,
Wnt/B-catenin pathway increases mitochondrial networking
(63) and regulates the bioenergetic potential as well as
metabolic profile of several cell types (63, 64), including
melanoma cells (42, 63). In addition, a majority of B-catenin-
binding proteins in PTEN"" A375-P melanoma cells are
involved in metabolic processes, which are vastly altered by
Wnt3A-mediated signaling (42). Our observation of the
novel interaction between PANXI and B-catenin prompted
us to investigate the mitochondrial metabolic profile of
PANX1-deficent cells. Our data revealed that reducing
PANXI1 in melanoma cells suppresses their mitochondrial
metabolism (Fig. 6). It is likely that PANX1 regulates the
metabolic profile of melanoma cells through modulation of
Wnt/B-catenin signaling.

In this paper, we document a previously undescribed
direct association of PANX1 with a key transcription factor
of the Wnt signaling, B-catenin. We have shown that PANX1
modulates B-catenin’s stability and transcriptional activity.
Our findings indicate an indirect way to modulate -catenin
at the protein level through FDA-approved repurposed
drugs, such as PBN and SPL that can potentially be used in
other contexts and diseases. These observations expand our
understanding of both PANX1 and (-catenin regulation and
establish a novel cross talk between PANX1 and the Wnt

quantified with Odyssey V3.0 (LI-COR Biosciences). The data represent the mean = S.E. (error bars) of at least three separate biological samples. Statistical
analysis conducted using Student’s t-test *p < 0.05. E, total RNA was extracted from the specified cells. Quantitative RT-gPCR was conducted to measure
human B-catenin mRNA. The amount of mRNA was corrected to YWHAZ as control in the same sample. mRNA in the A375-P cells was set to 1. The data
represent the mean =+ S.E. (error bars), N = 3, n = 3. Statistical analysis conducted using one-way ANOVA with Tukey post test ****p < 0.0001. n.s., not
significant. F, confocal images of PANX1-deficient (PANX1 shRNA) and control (Control shRNA) cells fixed and stained with anti-PANX1 (yellow) and anti-p-
catenin (red) antibodies. DNA was stained with Hoescht (blue). Samples incubated only with Alexa flour secondary antibodies were used as control
(Secondary only). Scale bar, 5 um. Data are representative of at least three independent experiments. G, MITF bands in blots described in C were quantified
with Odyssey V3.0 (left panel). The amount of MITF, lymphoid enhancer-binding factor 1 (LEF1) and Axin2 mRNA in PANX1-deficient cells (PANX1 shRNA)
was corrected to housekeeping gene as control in the same sample. mRNA in the A375-P cells transfected with control shRNA or nontransfected A375-P
cells was set to 1. The data represent the mean + S.E. (error bars), N = 3, n = 3. Statistical analysis conducted using one-way ANOVA with Tukey post hoc test
*p < 0.05 compared with A375-P and/or Control shRNA. H, MTT assay was conducted on PANX1-deficient and control cells. The data represent the mean +
S.E. (error bars), N = 3, n = 3. Statistical analysis conducted using one-way ANOVA with Tukey post hoc test ****p < 0.0001.
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Figure 4. B-catenin regulates PANX1 expression in melanoma cells. A, western blot showing equal amounts of protein lysate from control and f3-
catenin-deficient cells (clones A1, A2, and A3), probed using the indicated antibodies. GAPDH was used as a loading control. B, relative amount of B-catenin
mRNA in cells transfected with shRNA against 3-catenin was quantified using RT-qPCR and corrected to YWHAZ as control in the same sample. ***p <
0.0001, Student’s t-test. C, relative amount of PANX1 mRNA in cells transfected with shRNA against 3-catenin or against PANX1 was quantified as explained
in Panel B. The data represent the mean + S.E. (error bars), N = 3, n = 3. ****p < 0.0001, one-way ANOVA with Tukey post hoc test. n.s., not significant. D,
relative amount of MITF mRNA in cells transfected with -catenin shRNA or control shRNA. The data represent the mean =+ S.E. (error bars), N = 3, n = 3.
Statistical analysis conducted using Student’s t-test *p < 0.05. £, MTT assays were conducted on (-catenin-deficient cells and control cells. The data
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signaling pathway that can potentially be target for new
therapeutic interventions in patients with malignant
melanoma.

Experimental procedures

In silico analysis of correlation between PANX1 and 3-catenin
protein expression in melanoma and breast cancer tumors

PANX1 mRNA expression z-scores (RNA Seq V2 RSEM)
and CTNNB1 mRNA expression z-scores (RNA Seq V2
RSEM) were generated using data in cBioPortal.org from the
Skin Cutaneous Melanoma and Breast Invasive Carcinoma
Cohorts generated by the TCGA Research Network (http://
cancergenome.nih.gov).

Cell lines and culture conditions

Human melanoma cells lines, A375P (ATCC CRL-3224),
A375-MA2 (ATCC CRL-3223), A2058 (ATCC CRL-11147)
were obtained from ATCC while cell line 131/4-5B1 was a
gift from Dr Kerbel (65) and cultured in Dulbecco’s Modified
Eagle Medium 1X (DMEM 1X) containing 4.5 g/l D-glucose,
L-glutamine, 110 mg/l sodium pyruvate, 10% fetal bovine
serum (FBS, Invitrogen), 100 units/ml penicillin, and 0.1 mg/
ml streptomycin. All cells were incubated at 37 °C at 5% CO..
Trypsin (0.25%, 1 mM EDTA 1X; Life Technologies) was used
to dissociate cells from culture dishes.

Protein extraction and immunoblotting

Protein lysates were extracted with: 1% Triton X-100,
150 mM NaCl, 10 mM Tris, 1 mM EDTA, 1 mM EGTA, 0.5%
NP-40, or a RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM
NaCl, 1% NP-40 (Igepal), 0.5% sodium deoxycholate). Each
buffer contained 1 mM sodium fluoride, 1 mM sodium ortho-
vanadate, and half of a tablet of complete-mini EDTA-free
protease inhibitor (Roche). Protein was quantified by bicin-
choninic acid (BCA) assay (Thermo Scientific). Protein lysates
(40 pg) were separated by 10% SDS-PAGE and transferred onto
a nitrocellulose membrane using an iBlotTM System (Invi-
trogen). Membranes were blocked with 3% bovine serum al-
bumin (BSA) with 0.05% Tween-20 in 1X phosphate buffer
saline (PBS), and incubated with anti-human PANXI1 antibody
(1:1000; PANX1 CT-412; 0.35 pg/ul) (66), anti-human B-catenin
(BD Transduction Lab # 610154), MITF (abcam # ab20663).
Development and characterization of the anti-calmodulin
monoclonal antibody have been described (67) by Sacks at
NIH. Loading controls were done with an anti-GAPDH anti-
body (1:1000; Millipore Cat# MAB374). For detection, IRDye
-800CW and -680RD (Life TechnologiesTM) were used as
secondary antibodies at 1:10,000 dilutions and imaged using a
Li-Cor Odyssey infrared imaging system (Li-Cor). Western blot
quantification and analysis were conducted using Image Studio
Lite (LI-COR Biosciences). Subcellular fractionation was con-
ducted using NE-PER Nuclear and Cytoplasmic Extraction Kit

(ThermoFisher, # 78833) following the manufacturer’s instruc-
tion. Samples were resolved with SDS-PAGE and subjected to
western blotting as described above.

PANXT1 inhibitors

Carbenoxolone disodium salt (>98%; Sigma Aldrich) and
water-soluble Probenecid (77 mg/ml; Invitrogen) were dis-
solved in Hanks’s Balanced Salt Solution (HBSS 1X, Life
Technologies; calcium chloride, magnesium chloride, magne-
sium sulfate) to develop stock concentrations of each com-
pound. Spironolactone was purchased from Selleckchem (#52-
01-7).

Generation of Crispr/Cas9 knock out cells

PANX1 knockout cells were generated using CRISPR/Cas9
D10A following Ran et al., (68) protocol. Briefly, cells were
transfected with 1 pg each of pSpCas9n(BB)-2A-Puro (PX462)
V2.0 and pSpCas9In(BB)-2A-GFP (PX461) (addgene.org) con-
taining guide RNA sequences for human PANX1 in a 6-well
plate. PANX1 gRNAs were designed with http://tools.genome-
engineering.org (sequences GTTCTCGGATTTCTTGCTGA
and CTCCGTGGCCAGTTGAGCGA). Twenty-four hours
post transfection, cells were selected with 1 pg/ml Puromycin
for 72 h. Following selection, cells were screened for PANX1
levels by western blot. Plasmids were a gift from Feng Zhang
(Addgene plasmid #48140 and #62987).

shRNA knockdown of PANX1 and B-catenin

A375-P cells were transfected with two constructs (PANX1
shRNA-B and PANX1 shRNA-D) from Origene PANX1 hu-
man 29-mer shRNA kit in pRS vector (#TR302694) (sequence:
5-CGCAATGCTACTCCTGACAAACCTTGGCATGTCAA
GAGCATGCCAAGGTTTGTCAGGAGTAGCATTGTT-3)
plus a pLKO.1 sh P-catenin.1248 (CCGGAGGTGCTAT
CTGTCTGCTCTACTCGAGTAGAGCAGACAGATAGCAC
CTTTTTT) (#19761) GFP shRNA cassette (5’GCCCGCAA
GCTGACCCTGAAGTTCATTCAAGAGATGAACTTCAGG
GTCAGCTTGCTTTTT-3) from Addgene (#30323) as a
control. Control shRNA transfected cells were evaluated for
PANX1 and p-catenin expression compared with non-
transfected cells. Single cell colony of PANX shRNA-
expressing cells from two constructs (B and D) were selected
with puromycin and examined for PANX1 knockdown (KD).
Stable knockdown samples showed 80 to 90% reduction in
PANX1 expression. Cells were maintained under puromycin
selection pressure and periodically examined for effective
PANX1 knockdown by western blot. Similarly, single cell
colony selected [-catenin shRNA transfected cells were
examined for 80 to 90% reduction in [(-catenin expression.
Cells were maintained under puromycin selection pressure and
periodically examined for effective p-catenin knockdown by

represent the mean =+ S.E. (error bars), N = 3, n = 3. Statistical analysis conducted using one-way ANOVA with Tukey post hoc test *p < 0.05. F, cells
transfected with B-catenin shRNA or control shRNA were fixed and stained with anti-PANX1 (yellow) and anti-B-catenin (red) antibodies. DNA was stained
with Hoescht (blue). Scale bar, 5 pm. The data are representative of at least three independent experiments.
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Figure 5. Long-term exposure to PANX1 blockers decreases the abundance of PANX1 and B-catenin in melanoma cells. A, A375-MA2 cells were
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was performed using indicated antibodies. GAPDH was used as a loading control. B, the PANX1 (left panel) or B-catenin (right panel) bands in the blots
described in A were quantified with Odyssey V3.0 (LI-COR Biosciences). The data represent the mean * S.E. (error bars), N = 3, n = 3. *p < 0.05, **p < 0.01,
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by SDS-PAGE. Western blotting was performed using indicated antibodies. GAPDH was used as a loading control. D, PANX1 (left panel) or (-catenin (right
panel) bands in blots described in (C) were quantified as described for panel B. Student’s t test *p < 0.05, **p < 0.01 compared with control cells treated with
HBSS as vehicle control. E, the relative amount of PANX1 (middle panel) or B-catenin (right panel) mRNA in PBN- and SPL-treated cells was corrected to
housekeeping gene in the same sample. Relative mRNA in cells treated with HBSS as vehicle control was set to 1. The data represent the mean + S.E. (error
bars), N = 3, n = 3. Statistical analysis conducted using one-way ANOVA with Tukey post hoc test *p < 0.05. n.s., not significant. F, cells treated with 100 uM
Carbenoxolones (CBX) or T mM Probenecid (PBN) were fixed and stained with anti-PANX1 (yellow) and anti-B-catenin (red) antibodies. DNA was stained with
Hoescht (blue). Scale bar, 10 um. The data are representative of at least three separate experiments.
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rate (OCR) during the mitochondrial stress test is shown. B, a mitochondrial stress test was used to determine basal respiration, maximal respiration, and
spare respiratory capacity. Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP) was used as electron transport chain uncoupling agent. OCR was
normalized to total protein/well and Agilent Seahorse Wave Desktop and XF Cell Mito Stress Test Report Generator software were used for data processing.
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western blotting. Experiments were conducted after verifying
at least a 70 to 85% knockdown of PANX1 and [-catenin
protein levels by western blotting.

Transcription and translation (TyT) product production and
binding analysis

[3*S]Methionine-labeled TynT products were synthesized
using the TT quick coupled transcription/translation system
(Promega) essentially as described previously (69). Briefly, 1 pg
of each plasmid was incubated with 40 pl of TyT Quick Master
mix and 20 pCi of [**S]Imethionine (PerkinElmer Life Sciences)
for 90 min at 30 °C. TyT products were confirmed by SDS-
PAGE and autoradiography before being used in pull-down
assays. To identify the region of B-catenin that binds to

12 J Biol Chem. (2021) 296 100478

PANX1, TNT products of PANX1 were incubated with
maltose-binding protein (MBP)-B-catenin (MBP alone was
used as control) for 3 h at 4 °C. Complexes were washed five
times with wash buffer containing 50 mm Tris-HCl, pH 7.4,
150 mm NaCl, and 1% Triton X-100 and separated by SDS-
PAGE. The gels were dried, and autoradiography was
performed. To identify the region of PANX1 that binds to
B-catenin, portions of PANX1 were expressed with TNT.
Radiolabeled products were incubated with MBP-p-catenin
and processed as described above.

Protein purification and pull-down assay

pcDNA-PANX1(HCVp) was purchased from Addgen
(Plasmid#87698). pcDNA3-myc-PANX1-C was used to make

SASBMB



A direct Pannexin 1 interaction with B-catenin in melanoma

PCR product of PANX1-C with pcDNA-PANX1 as template
and 5’CGGGATCCGCTCCCGTGGTTGTCTACACGCTG-3
as positive primer, 5-CCGGAATTCTCTAGATCAGCAA
GAAGAATCCAGAAGTCTC-3 as negative primer. The PCR
product was cut with BamH I and Xba I and inserted into
pcDNA3-myc at BamH I and Xba I site.

pPET28a-TEV-hB-Catenin-N  (amino acids 1-137)
(Plasmid#17203), pPET28a-TEV-hB-Catenin-R1 (M and C
domains, amino acids 138-781) (Plasmid#17200) and
pPET28a-hp-Catenin-C (amino acids 666—781)
(Plasmid#17204) were purchased from Addgene. His-tagged
proteins were expressed in BL21 strain of E. Coli and puri-
fied with Talon Metal Affinity Resin according to the manu-
facturer’s protocol.

For binding assays, pcDNA3-myc-PANX1-C was trans-
fected into HEK293 cells. Cells were harvested 72 h post
transfection using Buffer A (50 mM Tris, pH 7.4, 150 mM
NaCl, 1% Triton-X100). Cells were lysed using sonication and
spun down. The supernatants were precleared with Talon
beads for 1 h at 4 °C. Equal amounts of protein lysate were
incubated with His-tagged B-catenin-N, -R1 or -C attached to
Talon beads, or empty Talon beads alone (negative control).
Samples were rotated at 4 °C for 3 h and washed 5x with Buffer
A. Then, samples were resuspended in 30 pl SDS-Sample
buffer. Proteins were separated by 15% SDS-PAGE. The gel
was cut below 25 kDa. The upper part was stained with
Coomassie blue. The lower part was transferred to PVDF
membranes and probed with anti-myc antibody (Millipore
anti-Myc-Tag Cat# 06-549).

Immunoprecipitation

131/4-5B1 or A375-P cells were plated in 10-cm dishes to
reach 80% confluence. The following day, the cells were
washed with ice-cold PBS and lysed with 500 pl of Buffer A
(50 mM Tris-HCI, pH 7.4, 150 mM NaCl, and 1% Triton X-
100) with either 1 mM CaCl2 (+) or EGTA(-) supplemented
with complete protease and phosphatase inhibitors (Roche).
Lysates were subjected to two rounds of sonication for 10 s
each, and insoluble material was precipitated by centrifugation
at 13,000¢ for 10 min at 4 °C. Supernatants were precleared
with protein A-Sepharose beads for 1 h. Equal amounts of
protein lysate were incubated with protein A-Sepharose beads
and anti-PANX1 polyclonal antibodies or anti-3-catenin
monoclonal antibody for overnight at 4 °C. Rabbit IgG and
mouse IgG were used as controls for polyclonal and mono-
clonal antibody immunoprecipitations, respectively. Samples
were washed five times with Buffer A, resolved by SDS-PAGE,
and Quick Western detection kit (LiCore #926-69100) was
used to detect the protein processed by western blotting.

MTT assay

Cells were cultured at 1000/well onto a 96-well plate. Cell
Proliferation Reagent WST-1 (Sigma Aldrich) was used to
assess the growth rate of cells according to manufacturer’s
instructions. Measurements at 450 nm and at a 690 nm were
taken on an Epoch microplate spectrometer (Biotek).

SASBMB

Quantitative RT-qPCR

To measure mRNA, cells were cultured for 24 h. Then total
RNA was isolated from the cells using an RNA isolation kit
(Qiagen). In total, 250 ng of RNA was reverse transcribed to
c¢DNA using a high-capacity cDNA reverse transcriptase kit
(Applied Biosystems#4374966) according to the manufac-
turer’s instructions. RT-qPCR was performed using SYBR
Green PCR Master Mix (BioRad#1725274) and 200 nM
forward and reverse primers. The primers used human
PANXI1: 5- AACCGTGCAATTAAGGCTG -3’ (forward); and
5- GGCTTTCAGATACCTCCCAC -3’ (reverse); p-catenin:
5- AAAATGGCAGTGCGTTTAG -3 (forward); and 5- TT
TGAAGGCAGTCTGTCGTA -3’ (reverse); MITF: 5- CCTT
CTCTTTGCCAGTCCATCT -3’ (forward); and 5- GGACAT
GCAAGCTCAGGACT -3’ (reverse); and Axin2: 5-GAGTG
GACTTGTGCCGACTTCA-3’ (forward); 5- GGTGGCTGGT
GCAAAGACATAG-3’ (reverse); and Lefl: 5- CCTGGTCC
CCACACAACTG-3 (forward); and 5- GGCTCCTGCTCC
TTTCTCTG-3’ (reverse); RT-qPCR enzyme activation was
initiated for 10 min at 95 °C and then amplified for 40 cycles of
a two-step PCR (15 s at 95 °C and 1 min at 60 °C). All samples
were assayed at least in duplicate, and YWHAZ was used as
reference control. The results were analyzed using the AACT
method.

Immunofluorescence microscopy

Cells were grown on glass coverslips and were fixed 72 h
posttransfection using ice-cold 8:2 methanol:acetone for
15 min at 4 °C and blocked with 2% BSA-PBS. Coverslips
were incubated with anti-human PANX1 antibody (1:500;
PANX1 CT-412; 0.35 pg/pl) and anti-mouse [-catenin
(1:450 BD Biosciences# 610153). Nuclei was stained with
Hoechst 33342 (1:1000), Alexa Fluor 647 anti-mouse and
555 goat anti-rabbit IgG (2 mg/ml, 1:500) were used as
secondaries, and mounted using Airvol (Mowiol 4-88; Sigma
Aldrich) prior to imaging. Immunofluorescence images were
obtained using a Zeiss LSM 800 Confocal Microscope with a
Plan-Apochromat 63x/1.40 Oil DIC objective (Carl Zeiss).

Mitochondrial stress test

Control shRNA and PANX-1 shRNA malignant mela-
noma cells were seeded at a density of 25,000 to 30,000 cells/
well in an XFe24 cell culture microplate (#102340-100;
Agilent) pretreated with 0.01% Poly-L-Lysine (Millipore #A-
005-C) 1 to 2 days prior to running the assay. On the day of
the assay, cell culture medium was replaced with Seahorse
XF DMEM medium, pH 7.4 (#103575-100; Agilent) sup-
plemented with 10 and 25 mM glucose (#103577-100; Agi-
lent), 4 mM glutamine (#103579-100; Agilent), and 1 mM
pyruvate (#103578-100; Agilent). Cells were incubated in XF
DMEM for one h at 37 °C, 0% CO, prior to running the
assay. A mitochondrial stress test kit (#103709-100; Agilent)
was used to determine basal respiration, maximal respira-
tion, and spare respiratory capacity following the manufac-
turer’s instructions. OCR was normalized to total protein/
well using a DC protein assay (#500-0116; Bio-Rad) or a
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bicinchoninic acid (BCA) assay (Thermo Scientific), and
Agilent Seahorse Wave Desktop and XF Cell Mito Stress
Test Report Generator software were used for data
processing.

Statistical analyses

All data are representative of at least three independent
experiments conducted with three technical replicates unless
otherwise mentioned in the figure legends. Statistical analyses
were performed using GraphPad Prism software (version 8.0).
Error bars indicate mean + standard error mean. The details of
statistical analysis are provided in figure legends.

Data availability

All the data described in the study is contained within the
article. Raw data available upon request (Dr Silvia Penuela,
Western University, spenuela@uwo.ca).
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