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Mitochondria not only contribute to the harvesting of 
energy, but also serve as key signaling hubs connecting 
numerous metabolic processes to essential cellular and 

organismal functions1–3. It is therefore not surprising that the dys-
function of mitochondria is tightly associated with aging, as well 
as diverse human age-related diseases, including those affecting 
metabolic, cardiovascular and neuromuscular systems, as well as  
cancer2,4–7. Moreover, mitochondria function as platforms to regulate  
programmed cell death and innate immune responses1,8,9. Multiple 
mitochondrial stress response (MSR) pathways have evolved to 
adapt mitochondrial function to the ever-changing cellular milieu 
and to a variety of extracellular cues10,11. However, aberrant activa-
tion of these MSR pathways may also be maladaptive and contri-
bute to disease and aging2, underscoring the importance of the tight  
control of these regulatory circuits.

The mitochondrial unfolded protein response (UPRmt), one of 
these MSR pathways, is triggered by mitochondrial-to-nuclear com-
munication, leading to an adaptive transcriptional response that 
promotes repair and recovery of the cell or organism from transient 
mitochondrial dysfunction10–13. It recently emerged that activation of 
the UPRmt provides resistance to pathogen infections (for example, 
Pseudomonas aeruginosa) in Caenorhabditis elegans, and animals that 
failed to activate UPRmt during P. aeruginosa infection died earlier, sug-
gesting that the UPRmt is a bona fide component of the innate immune 
response14,15. In mammalian cells, mitochondrial perturbations also 
lead to cellular stress responses closely associated with innate immu-
nity9,16; for example, herpesvirus infections induce a mitochondrial 
DNA stress response, which enhances antiviral signaling and type I 
interferon responses and thereby confers viral resistance17.

The regulation of the UPRmt is complex and pleiotropic, and 
includes control at the level of transcription and chromatin orga-
nization. At the transcriptional level, the activating transcription 
factor associated with stress-1 (ATFS-1) in C. elegans18, and its 
functional orthologs activating transcription factor 4 (ATF4), ATF5 
and C/EBP homologous protein (CHOP) in mammals19–21, seem 
to be key regulators of the UPRmt. Two recent studies suggest that 
an overlapping with the m-AAA protease 1 (OMA1)–DAP3 bind-
ing cell death enhancer 1 (DELE1)–heme-regulated eIF2α kinase 
(HRI) signaling pathway relays the mitochondrial stress from mito-
chondria to the cytosol in mammals22,23. On the epigenetic level, the 
histone methyltransferase MET-2/nuclear co-factor LIN-65 com-
plex and two histone demethylases, jumonji domain-containing 
protein-1.2 (JMJD-1.2)/PHD finger protein 8 (PHF8) and JMJD-
3.1/lysine demethylase 6B (KDM6B), regulate the UPRmt and 
mitochondrial stress-induced longevity in both C. elegans and 
mammals24,25, whereas in yeast the histone demethylase Rph1p is 
the key modulator26. However, how these different layers of UPRmt 
regulation is systematically coordinated to induce the expression of 
various UPRmt genes and execute different biological functions is 
still poorly understood.

Here, we demonstrate that CREB-binding protein-1 (CBP-1) 
acts as an essential link to translate the mitochondrial stress signal 
from the demethylases JMJD-1.2 and JMJD-3.1 to the UPRmt tran-
scription factors (for example, ATFS-1) into the coordinated tran-
scriptional induction of a wide panel of UPRmt genes in C. elegans.  
Importantly, the beneficial effects induced by mitochondrial pertur-
bations, such as resistance to pathogen infection, improved proteo-
stasis against amyloid-β (Aβ) aggregation, and lifespan extension,  
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are almost completely blocked by cbp-1 silencing. Moreover, sys-
tematic correlation analysis in mouse and human populations, as  
well as genetic and pharmacological loss-of-function (LOF) studies in 
mammalian cells, strongly suggest that the function of CBP/p300 in  
the regulation of the UPRmt, health and lifespan is also conserved  
in mammals. Collectively, these results highlighted that CBP/p300 
is an evolutionarily conserved node for mitochondrial stress sig-
naling that defends mitochondrial function and promotes health  
and longevity.

results
CBP-1 controls UPRmt activation in C. elegans. We used a UPRmt 
activation model by knocking down cytochrome c oxidase-1 (cco-1)  
in the UPRmt reporter hsp-6p::gfp strain27,28 and performed an RNA 
interference (RNAi) screen by feeding RNAi targeting all puta-
tive lysine acetyltransferases (KATs) in C. elegans (Extended Data  
Fig. 1a)29–32. Only RNAi of cbp-1 (R10E11.1)33, the ortholog of 
human CBP/p300 (refs. 34–37), attenuated UPRmt activation to a 
similar extent as the silencing of the key UPRmt transcription factor  
atfs-1 (Fig. 1a and Extended Data Fig. 1b)18. The effect of cbp-1 
RNAi on UPRmt activation induced by RNAi-mediated LOF of cco-1 
and mitochondrial ribosomal protein S5 (mrps-5)13 was furthermore 
dose dependent (Fig. 1b and Extended Data Fig. 1c,d). Moreover, 
another RNAi clone (cbp-1_RNAi_2), targeting a different region of 
the cbp-1 messenger RNA (mRNA) compared with the one used in 
the RNAi screening (cbp-1_RNAi_1), also impaired UPRmt activa-
tion (Extended Data Fig. 1e,f).

As an alternative approach to inhibit CBP-1 activity, we used two 
mechanistically different small-molecule inhibitors: a highly specific 
CBP/p300 catalytic inhibitor, A-485 (ref. 38); and a CBP/p300 bromo-
domain inhibitor, PF-CBP1 (Extended Data Fig. 1e)39. Both inhibi-
tors suppressed UPRmt activation induced by cco-1 or mrps-5 RNAi, 
with A-485 having effects at a lower concentration (10 μM) com-
pared with PF-CBP1 (80 μM) (Fig. 1c and Extended Data Fig. 1g).  
Likewise, genetic or pharmacological inductions of the UPRmt by 
LOF of spg-7, timm-23, tomm-40, cts-1 and dlst-1, or by adminis-
tering antimycin A and doxycycline (Dox)13,14,40, were abolished by 
cbp-1 RNAi (Fig. 1d,e). Of note, UPRmt activation was not affected 
by RNAi that specifically targeted the two probable pseudogenes 
of cbp-1, cbp-2 and cbp-3 (Extended Data Fig. 1h,i), both of which 
lack most of the functional domains compared with CBP-1, includ-
ing the histone acetyltransferase domain (Extended Data Fig. 1j)33. 
cbp-1 RNAi also attenuates activation of the endoplasmic reticulum 
UPR, but not the cytosolic UPR/heat shock response in C. elegans, 
suggesting some activity in cross-modal stress response pathways 
(Extended Data Fig. 1k–n).

To determine the footprints of CBP-1 on the regulation of the 
UPRmt, we performed RNA sequencing (RNA-seq) on total RNA 
isolated from hsp-6p::gfp worms fed with cco-1 or mrps-5 RNAi, 
in combination with cbp-1 or atfs-1 RNAi (Extended Data Fig. 2a 
and Supplementary Table 1). The majority of transcripts induced 
by mrps-5 RNAi were also induced by cco-1 RNAi, but not the other 
way around (Extended Data Fig. 2b), which might have been due 
to the superior knockdown efficiency of cco-1 compared with that 
of mrps-5 (Extended Data Fig. 2c). We thus focused on the genes 
affected by cco-1 RNAi. A total of 1,241 transcripts were significantly 
upregulated after cco-1 RNAi (log2[fold change] > 0.5; adjusted 
P < 0.05; defined here as UPRmt genes), among which 506 (40.8%) 
were CBP-1 dependent and 404 (32.6%) required ATFS-1 (Fig. 1f,g).  
The number of ATFS-1-dependent transcripts was similar to that 
found in a previous study18. Up to 259 genes induced by cco-1 RNAi 
were dependent on both CBP-1 and ATFS-1 (Fig. 1g). Gene Ontology 
analysis revealed that a large number of mitochondrion-, trans-
membrane transport- and metabolic process-related genes, includ-
ing hsp-6, timm-23 and gpd-2, required both CBP-1 and ATFS-1 
for induction (Fig. 1h,j and Extended Data Fig. 2d). In addition,  

many innate immune genes, such as the C-type lectin, clec-65, were 
also included in this gene set (Fig. 1f,h,j), supporting a role of UPRmt 
in regulating the immune response14,15.

Among the 506 UPRmt transcripts regulated by CBP-1, 247 
(48.8%) were only dependent on CBP-1, but not ATFS-1 (Fig. 1g), 
and were enriched for innate immune response (for example, clec-
70), proteolysis (for example, asp-10) and metabolic processes (for 
example, gdh-1) (Fig. 1i,j and Extended Data Fig. 2e). Consistent with 
the role of ceramide biosynthesis in mitochondrial surveillance14,41, 
sptl-2, which encodes a serine palmitoyltransferase, was robustly 
induced after cco-1 or mrps-5 knockdown in a CBP-1- but not ATFS-
1-dependent fashion (Extended Data Fig. 2f). Moreover, other UPRmt 
inducers, including LOF of spg-7, timm-23, tomm-40, cts-1 and  
dlst-1, not only led to the induction of CBP-1 and ATFS-1 commonly 
dependent UPRmt transcripts (for example, hsp-6), but also upregu-
lated UPRmt transcripts that were only dependent on CBP-1 but not 
ATFS-1 (for example, clec-70) (Extended Data Fig. 2g).

In response to cco-1 RNAi, 1,354 transcripts were signifi-
cantly downregulated (log2[fold change] < −0.5; adjusted P < 0.05) 
(Extended Data Fig. 2h and Supplementary Table 2); among these 
transcripts, 709 (52.4%) were also downregulated, and 190 (14.0%) 
were conversely upregulated, after cbp-1 RNAi (Extended Data  
Fig. 2h). Interestingly, both gene clusters were enriched for meta-
bolic process, oxidation-reduction process and carbohydrate meta-
bolic process (Extended Data Fig. 2i,j), indicating a global rewiring 
of metabolism during mitochondrial stress19,21,42,43 and highlighting 
the vital role of cbp-1 in this reprogramming. Finally, most tran-
scripts downregulated after mrps-5 RNAi were also downregulated 
during cco-1 silencing (Extended Data Fig. 2k). Taken together, these 
data suggest that CBP-1 controls the induction of a broad spectrum 
of UPRmt genes upon various mitochondrial stresses in C. elegans.

Mitochondrial stress increases CBP-1-mediated histone acety-
lation at the loci of UPRmt genes. Next, we sought to explore the 
molecular mechanism by which CBP-1 regulates UPRmt activation. 
CBP/p300, the mammalian homologues of CBP-1, are acetyltrans-
ferases involved in histone acetylation36,37. In worms fed with cco-1 
and mrps-5 RNAi, the global histone 3 acetylation at K18 (H3K18Ac) 
was increased by 60 and 40%, and H3K27Ac was increased by 90 
and 20%, respectively, compared with worms fed with control RNAi 
(Fig. 2a). This increase was remarkably attenuated by cbp-1 RNAi. 
Similar results were also found for H4K5Ac (Extended Data Fig. 3a),  
while H3K4Ac and H3K9Ac levels were not affected by cbp-1 
knockdown. RNAi for atfs-1 did not alter the levels of any of the his-
tone modifications examined (Fig. 2a and Extended Data Fig. 3a). 
Moreover, the CBP/p300 catalytic inhibitor, A-485, also impaired 
H3K18Ac and H3K27Ac, but not H3K9Ac, under cco-1 knockdown 
(Fig. 2b). Additionally, other UPRmt inducers, including LOF of  
spg-7, timm-23, tomm-40, cts-1 and dlst-1, increased H3K18Ac by 
90% to 170%, and H3K27Ac by 30% to 150% (Fig. 2c).

It has been known that acetylation of H3K18 and H3K27, which 
transforms the condensed chromatin into a more relaxed struc-
ture, is generally linked to active transcription29,30,32,44. To examine 
whether CBP-1-mediated histone acetylation contributes to the 
transcriptional activation of UPRmt genes, we performed chroma-
tin immunoprecipitation sequencing (ChIP-seq) with antibodies  
against H3K18Ac and H3K27Ac in worms fed with control or cco-1 
RNAi. Among the 506 UPRmt genes regulated by CBP-1 (Fig. 1g), 
203 had enriched H3K18Ac or H3K27Ac peaks in the genome 
(Fig. 2d). Importantly, 66.0% (134/203) of these UPRmt genes (for 
example, hsp-6, timm-23, hsp-60 and gpd-2) demonstrated sig-
nificantly increased levels of H3K18Ac or H3K27Ac (110 genes 
for H3K18Ac (P < 1.9 × 10−10; Fisher’s exact test) and 76 genes for 
H3K27Ac (P < 1.5 × 10−12; Fisher’s exact test)) after cco-1 RNAi 
(false discovery rate (FDR) < 0.05) (Fig. 2d–g, Extended Data 
Fig. 3b and Supplementary Table 3). In contrast, no differences in 
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Fig. 1 | CBP-1 controls activation of the uPrmt in C. elegans. a,b, cbp-1 rNai attenuates uPrmt activation induced by cco-1 (a) or mrps-5 (b) knockdown 
in hsp-6p::gfp worms. For rNai treatment, rNai targeting cco-1 or mrps-5 occupies 40%, cbp-1 rNai occupies 25% and atfs-1 rNai occupies 60%. 
Control rNai (empty vector (ev)) was used to supply to a final 100% of rNai for all conditions. DIC, differential interference contrast. c, The CBP/p300 
small-molecule inhibitors a-485 and PF-CBP1 attenuate uPrmt activation in worms. hsp-6p::gfp worms were fed with control or uPrmt-inducing cco-1 
(40%) rNai, in combination with a-485 (10 μM) or PF-CBP1 (80 μM) treatment. d,e, cbp-1 rNai abolishes uPrmt activation induced by spg-7, timm-23, 
tomm-40, cts-1 or dlst-1 rNai (d), and by antimycin a (2.5 μM) or Dox (30 μg ml−1) (e), in hsp-6p::gfp worms. The atfs-1 rNai was used as a positive control. 
rNai targeting tomm-40, cts-1 or dlst-1 occupies 40%, cbp-1 rNai occupies 25% and atfs-1 rNai occupies 60%. f, Volcano plots showing the effects on 
gene expression of cco-1 rNai compared with the control rNai (ev) (left), and of cbp-1 (middle) or atfs-1 (right) knockdown in a cco-1 rNai background. 
Genes dependent on both CBP-1 and aTFS-1 for induction after cco-1 rNai are highlighted in red (common). Genes dependent on CBP-1, but not aTFS-1, for 
induction are in blue (CBP-1 only). Genes dependent on aTFS-1, but not CBP-1, for induction are highlighted in orange (aTFS-1 only). Padj, adjusted P value. 
g, Venn diagram of CBP-1-dependent uPrmt genes that are in common with aTFS-1-dependent uPrmt genes in response to cco-1 rNai, according to the 
rNa-seq data. h,i, Functional clustering of the 259 (h) and 247 (i) uPrmt genes as indicated in g. j, Heatmap of the representative uPrmt genes dependent 
on CBP-1 for induction during cco-1 knockdown. The color coding represents gene expression differences in log2[fold change] relative to the control rNai 
(ev) condition. Genes dependent on both CBP-1 and aTFS-1 are highlighted in red. Genes dependent on CBP-1, but not aTFS-1, are highlighted in blue. Scale 
bars (a–e), 0.3 mm.
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Fig. 2 | Mitochondrial stress increases CBP-1-dependent histone acetylation at the loci of a large set of uPrmt genes. a, H3K18 and H3K27 acetylation 
increases in a CBP-1-dependent manner during uPrmt activation induced by cco-1 or mrps-5 rNai. Western blots of hsp-6p::gfp worms fed with control, 
cbp-1, atfs-1, cco-1 or mrps-5 rNai are shown. rNai targeting cbp-1 occupies 25% and atfs-1, cco-1 or mrps-5 occupies 50%. Control rNai was used to supply 
to a final 100% of rNai for all conditions. b, The increase of H3K18ac and H3K27ac upon cco-1 rNai is strongly blocked by chemical inhibition of CBP/
p300 with a-485. Western blots of hsp-6p::gfp worms fed with control or cco-1 (50%) rNai are shown, in combination with DMSO or a-485 (10 μM) 
treatment. c, Western blots of hsp-6p::gfp worms showing increased H3K18ac and H3K27ac during uPrmt activation induced by rNai targeting different 
mitochondrial genes, as indicated. d, Summary of the H3K27ac and H3K18ac ChIP-seq results in worms fed with control or cco-1 rNai. e–g, Treatment 
of cco-1 rNai increases H3K18ac and H3K27ac at the genomic loci of representative uPrmt genes including hsp-6, hsp-60 and timm-23. Genome tracks 
show the ChIP-seq analysis for H3K27ac and H3K18ac over the genomic loci of hsp-6 (e), hsp-60 (f) and timm-23 (g) in worms fed with control (ev) or 
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clustering of the 4,639 (h) and 2,283 (i) genes as indicated in d. j–l, cco-1 rNai-induced increase of H3K18ac and H3K27ac at the loci of representative 
uPrmt genes is completely blocked by cbp-1 rNai. The results of ChIP–qPCr analysis of hsp-6 (j), hsp-60 (k) and timm-23 (l) in worms fed with rNai 
targeting cco-1 and/or cbp-1 (n = 4 biologically independent samples) are shown. rNai targeting cco-1 occupies 50% and cbp-1 occupies 25%. ChIP was 
performed using antibodies to H3K18ac or H3K27ac. error bars denote s.e.m. Statistical significance was determined by aNOVa followed by Tukey’s 
post-hoc test. IgG, immunoglobulin G; IP, immunoprecipitation.
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H3K18Ac or H3K27Ac marks were observed for the endoplasmic 
reticulum UPR markers hsp-3 and hsp-4, or for the cytosolic UPR/
heat shock response marker hsp-16.2, upon cco-1 RNAi treatment 
(Extended Data Fig. 3c–e). By analyzing the distribution of the 
265 increased H3K18Ac/H3K27Ac peaks on the 134 UPRmt genes, 
we found that 54.0% (143/265) of them were located in promoter 
regions, 40.0% (106/265) were in coding regions and 6.0% (16/265) 
were downstream of the coding region (Extended Data Fig. 3f and 
Supplementary Table 3). Indeed, for some genes (for example, 
hsp-60), acetylation peaks are restricted to the promoter (Fig. 2f), 
whereas for other genes (for example, hsp-6 and timm-23), acetyla-
tion marks exist in both promoter and coding regions (Fig. 2e,g). It 
is also noteworthy that both gene sets upregulated for the acetyla-
tion marks in response to cco-1 RNAi (4,639 genes for H3K18Ac and 
2,283 genes for H3K27Ac) were highly enriched for Gene Ontology 
terms including metabolic pathways, mitochondrion, and determi-
nation of adult lifespan (Fig. 2h,i and Supplementary Table 3), sup-
porting a critical role of these epigenetic adaptations in the control 
of mitochondrial metabolism and lifespan upon mitochondrial 
stress. Using ChIP coupled with quantitative PCR (ChIP–qPCR), we 
detected that the increased enrichment of H3K18Ac and H3K27Ac 
at the loci of UPRmt genes (for example, hsp-6, hsp-60 and timm-23) in 
response to cco-1 knockdown was completely blocked by cbp-1 RNAi  
(Fig. 2j–l). These results indicate that increased CBP-1-dependent 
histone acetylation upon mitochondrial stress is closely associated 
with the transcriptional activation of a large set of UPRmt genes.

CBP-1 acts downstream of JMJD-3.1/JMJD-1.2 and upstream of 
ATFS-1. Two histone demethylases, JMJD-3.1 and JMJD-1.2, have 
been reported to remove the repressive H3K27me3 mark from the 
promoter/coding regions of UPRmt genes, poising them for transcrip-
tion, and overexpression of jmjd-3.1 in worms is sufficient to activate 
the UPRmt (ref. 25). RNAi for cbp-1 abolished activation of the UPRmt 
in two independently generated jmjd-3.1-overexpressing strains 
(Fig. 3a). Moreover, increased levels of H3K18Ac and H3K27Ac, 
but not H3K9Ac, were detected in jmjd-3.1-overexpressing worms, 
and this was attenuated by cbp-1 RNAi (Fig. 3b). In addition, 177 
(35.0%) of the 506 CBP-1-dependent UPRmt transcripts were also 
induced in jmjd-3.1-overexpressing worms (GSE78990) (Fig. 3c,d 
and Supplementary Table 4), and 129 (72.9%) of these 177 UPRmt 
transcripts were also upregulated upon jmjd-1.2 overexpression 
(Supplementary Table 4), underscoring a positive role of CBP-1 
in the regulation of the MSR. Notably, cbp-1 stood out as the 
most upregulated transcript among all of the 13 putative KATs in 
jmjd-3.1-overexpressing worms (Fig. 3e).

To further explore how CBP-1 affects the transcriptional  
activation of UPRmt genes, we took advantage of the atfs-1(et18) 
mutant45, which carries a mutation in the mitochondrial targeting 
sequence of the transcription factor ATFS-1, leading to its nuclear 
accumulation and constitutive activation of the UPRmt. Silencing 
of cbp-1 blocked UPRmt activation in the atfs-1(et18) mutant 
(Fig. 3f,g). Moreover, ATFS-1 failed to bind to the promoters of 
UPRmt genes (for example, hsp-6 and hsp-60) in cbp-1 RNAi-fed 
atfs-1p::atfs-1::flag worms, even during mitochondrial stress 
induced by cco-1 RNAi (Fig. 3h). Collectively, these data indicate 
that jmjd-3.1-overexpression-mediated UPRmt activation requires 
CBP-1, and CBP-1-dependent histone acetylation acts downstream 
of JMJD-3.1 and JMJD-1.2 at the same time as upstream of ATFS-1, 
leading to transcriptional induction of UPRmt genes.

Beneficial effects of UPRmt require CBP-1. We then explored the 
physiological consequences of CBP-1 on MSR regulation. In line 
with the fact that mild mitochondrial stress protects against infection 
by pathogens, such as P. aeruginosa14,15, cco-1 or mrps-5 knockdown 
increased the survival rate of worms exposed to P. aeruginosa, an 
effect that was completely abolished by cbp-1 knockdown (Fig. 4a,b). 

To further examine the vital role of CBP-1 in mitochondrial surveil-
lance, we raised wild-type worms (N2) and mitochondrial respira-
tion mutants with disruptions in one of the mitochondrial electron 
transport chain components, isp-1(qm150) and clk-1(qm30)46,47, on 
control or cbp-1 RNAi. Compared with C. elegans fed with con-
trol RNAi, cbp-1 RNAi even at 10% led to severe synthetic growth 
defects of the isp-1(qm150) and clk-1(qm30) mutants, whereas the 
development of wild-type worms was only slightly delayed (Fig. 4c). 
Similar effects were also observed in A-485-treated worms (Fig. 4c), 
indicating that mitochondrial mutants strongly rely on CBP-1 activ-
ity to maintain growth.

We then questioned whether cbp-1 is required for mitochondrial 
stress-induced lifespan extension in C. elegans13,48. RNAi for cbp-1 at 
20%, which was enough to suppress the UPRmt activation induced 
by cco-1 knockdown (Extended Data Fig. 1c), completely blocked 
the lifespan extension induced by cco-1 RNAi (Fig. 4d). Likewise, 
cbp-1 RNAi at 10% fully abolished mrps-5 knockdown-induced 
lifespan extension (Fig. 4e), in line with its capacity to block 
mrps-5 RNAi-induced UPRmt activation (Extended Data Fig. 1d).  
Meanwhile, consistent with the results of another study49, cbp-1 
knockdown alone shortened the lifespan of C. elegans (Fig. 4d,e), 
potentially due to the attenuated basal expression of diverse 
nuclear-encoded MSR transcripts (Fig. 1j).

We have previously shown that humans with Alzheimer’s dis-
ease, as well as mouse and C. elegans models of Alzheimer’s dis-
ease, are all typified by the induction of a cross-species conserved 
MSR transcript signature50. Strikingly, further activation of these 
MSR pathways reduced Aβ proteotoxicity in cells, worms and trans-
genic mouse models of Alzheimer’s disease50. The GMC101 strain 
is a worm Alzheimer’s disease model that expresses the human 
Aβ1–42 peptide in body-wall muscle cells51. Adults of GMC101 
develop age-progressive paralysis and amyloid deposition after a 
temperature shift from 20 to 25 °C. In these worms, cbp-1 RNAi at 
10% caused a severe developmental delay even in the absence of 
the disease-inducing temperature shift, phenocopying mitochon-
drial respiration mutants that rely on cbp-1 for adaption, whereas 
the control CL2122 strain was not affected (Extended Data Fig. 4).  
Similar to atfs-1 RNAi, cbp-1 RNAi exacerbated Aβ aggregation 
in the GMC101 strain (Fig. 4f). In addition, cbp-1 knockdown 
in GMC101 worms prominently repressed not only the classical 
UPRmt transcripts (for example, hsp-6) but also many UPRmt genes 
involved in proteolysis that only depend on CBP-1, but not ATFS-1 
(for example, asp-10) (Fig. 1i,j and 4g). Interestingly, the transcripts 
of another branch of the MSR (that is, autophagy/mitophagy (for 
example, sqst-1 and dct-1)) were conversely increased during cbp-1 
RNAi, suggesting a specific role of CBP-1 in regulating the UPRmt 
branch of the MSR. Finally, cbp-1 RNAi worsened the paralysis 
and completely blocked the beneficial effect of Dox, an antibiotic 
that inhibits mitochondrial translation and activates the MSR13, 
on the reduction of Aβ aggregates in GMC101 worms50 (Fig. 4h,i). 
Together, these results indicate that CBP-1 is essential for the mito-
chondrial stress-induced immune response, lifespan extension and 
Aβ aggregation reduction in C. elegans.

CBP/p300 expression correlates with UPRmt transcripts and 
lifespan. Next, we examined whether the role of CBP-1 in UPRmt 
activation and MSR-associated beneficial effects is conserved in 
mammals. CBP expression in the spleen, pituitary gland, adrenal 
gland and eye positively correlated with p300 expression in the 
C57BL/6J × DBA/2J (BXD) mouse genetic reference population43,52 
(www.genenetwork.org and Fig. 5a), confirming a complementary 
function of the two acetyltransferases35–37. Their expression levels 
also correlated with transcript levels of Kdm6b and Phf8, the murine 
homologs of jmjd-3.1 and jmjd-1.2 (Fig. 5a). Moreover, in these tis-
sues, CBP/p300 expression overall positively correlated with tran-
scripts of UPRmt-related genes10–12, including the mitochondrial 
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proteases (Lonp1, Yme1l1 and Spg7), DNA-binding proteins (Satb1 
and Ubl5), mitochondrial chaperones (Hspe1, Hspd1 and Hspa9) 
and asparagine synthetase, Asns (Fig. 5a). Similar correlation net-
works were also found in the hippocampus and hypothalamus of 
BXD mice (Extended Data Fig. 5a), as well as in the brain and pre-
frontal cortex of mice from a different genetic reference population, 
the inbred long-sleep × inbred short-sleep (LXS) cohort53 (Extended 
Data Fig. 5b). In accordance with the indispensable role of CBP-1 
in MSR-associated health and lifespan regulation in C. elegans  
(Fig. 4), we observed positive correlations between lifespan and 
CBP/p300 expression in the spleen, pituitary gland, adrenal gland, 
eye, hippocampus and hypothalamus of the BXD strains (Fig. 5b,c 
and Extended Data Fig. 5c).

Finally, in the human Genotype-Tissue Expression (GTEx) 
database54, mRNA levels of CBP/p300 positively correlated with 
KDM6B, PHF8 and UPRmt transcripts in many tissues, including 
the brain, hypothalamus, liver, heart, stomach, pancreas, kidney 
and small intestine, forming a systematic network (Fig. 5d). These 
observations suggest that CBP/p300 probably plays an evolution-
arily conserved role in MSR regulation across species from worms 
to humans.

A conserved role of CBP/p300 in MSR. To validate the strong con-
nections between CBP/p300 and UPRmt activation in mammals, 
we challenged wild-type and CBP/p300 knockout mouse embry-
onic fibroblasts (MEFs) with the mitochondrial stress inducer 
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Fig. 3 | CBP-1 acts downstream of JMJD-3.1/JMJD-1.2 and upstream of ATFS-1 to support the expression of uPrmt genes. a, cbp-1 rNai attenuates the 
uPrmt activation induced by jmjd-3.1 overexpression. Fluorescent micrographs of wild-type (N2) or two independent hsp-6p::gfp worm lines carrying the 
integrated jmjd-3.1p::jmjd-3.1 transgene fed with control, cbp-1 (25%) or atfs-1 (100%) rNai are shown. b, jmjd-3.1 overexpression increases H3K27ac and 
H3K18ac in a CBP-1-dependent manner. Western blots of wild-type or jmjd-3.1 transgenic worms fed with control or cbp-1 (25%) rNai are shown.  
c, Heatmap showing strong upregulation of a representative set of CBP-1-dependent uPrmt transcripts (log2[fold change] values) in jmjd-3.1 transgenic 
worms compared with wild-type (N2) worms25. d, jmjd-3.1 overexpression increases the expression of a representative set of CBP-1-dependent uPrmt genes. 
rT–qPCr results of wild-type or jmjd-3.1 transgenic worms fed with control or cbp-1 (25%) rNai (n = 4 biologically independent samples) are shown.  
e, Heatmap (log2[fold change] values) showing the relative transcript levels of all putative KaTs in wild-type and jmjd-3.1p::jmjd-3.1 transgenic worms25. 
f, cbp-1 rNai attenuates uPrmt activation in the atfs-1(et18) mutant. Fluorescent micrographs of wild-type or hsp-6p::gfp worms carrying the atfs-1(et18) 
mutant fed with control, cbp-1 (25%) or atfs-1 (100%) rNai are shown. g, rT–qPCr results of the worms indicated in f (n = 4 biologically independent 
samples). h, cbp-1 rNai blocks the binding of aTFS-1 to the loci of uPrmt genes. The results of ChIP–qPCr analysis of hsp-6 and hsp-60 in atfs-1p::atfs-1::flag 
worms fed with control, cco-1 (50%) and/or cbp-1 (25%) rNai (n = 3 biologically independent samples) are shown. ChIP was performed using anti-Flag M2 
beads. error bars denote s.e.m. Statistical significance was determined by aNOVa followed by Tukey’s post-hoc test. Scale bars (a and f), 0.3 mm.
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Dox13,36. Dox induced many UPRmt transcripts, such as Hspd1, 
Hspa9, Lonp1 and Asns, a response that was remarkably blocked 
by CBP/p300 knockout (Fig. 6a). RNA-seq analysis revealed that 
327 transcripts were upregulated (log2[fold change] > 0.5; adjusted 
P < 0.05) and 245 transcripts were downregulated (log2[fold 

change] < −0.5; adjusted P < 0.05) in wild-type MEFs upon Dox 
treatment (Extended Data Fig. 6a,b and Supplementary Table 5). 
In contrast, only 38 upregulated and 58 downregulated transcripts 
were detected in CBP/p300−/− MEFs (Extended Data Fig. 6b). 
Importantly, up to 197 (60.2%) of the 327 Dox-induced transcripts 
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Fig. 5 | Expression of CBP/p300 positively correlates with uPrmt transcripts and longevity in mouse and human populations. a, Pearson’s correlation 
co-expression heatmap for CBP, p300, Kdm6b, Phf8 and uPrmt genes in the spleen, pituitary gland, adrenal gland and eye of the BXD mouse genetic 
reference population43,52. Positive and negative correlations are indicated in red and blue, respectively. The intensity of the colors corresponds to the 
correlation coefficient. b, Positive correlations between lifespan and CBP transcript levels in the spleen, pituitary gland and adrenal gland of BXD mice 
(Pearson’s r; two sided). c, Positive correlations between lifespan and p300 transcript levels in the spleen, pituitary gland and eye of BXD mice (Pearson’s 
r; two sided). d, Circos plot of the expression correlations between CBP/p300 transcripts and uPrmt gene transcripts in the brain (cerebellar hemisphere), 
hypothalamus, liver, heart (left ventricle), stomach, pancreas, kidney and small intestine of human samples derived from the GTex database (version 8)54. 
The red bar ring shows the Pearson’s correlation coefficients (r) between uPrmt gene transcripts and CBP (light red) or p300 (dark red). The blue bar ring 
shows the the Spearman’s rank correlation coefficients (Rho) between uPrmt gene transcripts and CBP (light blue) or p300 (dark blue). all correlations 
were found to be positive.
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aNOVa followed by Tukey’s post-hoc test.
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in wild-type MEFs were dependent on CBP/p300 for induction  
(Fig. 6b). These Dox-induced and CBP/p300-dependent transcripts 
were enriched for the following categories: aminoacyl-tRNA synthe-
tase, confirming a close link between mRNA translation and the UPRmt  
(refs. 21,55); serine biosynthesis, including Phgdh, Psat1, Psph and 
Shmt2 (refs. 19,56); and metabolic and mitochondrial pathways (for 
example, Eno1b and Timm10) (Fig. 6c and Extended Data Fig. 6c). 
Similar gene sets were also recently reported to be induced by other 
MSR inducers, such as carbonyl cyanide m-chlorophenyl hydra-
zone and oligomycin, in different mammalian cells22,23. It is also 
noteworthy that Dox-induced expression of both Atf4 and Atf5, two 
key transcriptional regulators of the UPRmt (refs. 19,20), was heav-
ily dependent on CBP/p300 (Extended Data Fig. 6c), suggesting a 
commanding role of CBP/p300 in UPRmt activation. In addition, 
reconstitution of wild-type p300, but not a p300 acetyltransferase 
activity-defective mutant, restored Dox-induced UPRmt activation 
in CBP/p300−/− MEFs (Fig. 6d,e), confirming that the catalytic 
activity of CBP/p300 is indispensable for this stress response.

In line with increased CBP/p300-mediated histone acetyla-
tion during mitochondrial perturbations in C. elegans (Fig. 2a–c), 
H3K18Ac and H3K27Ac levels peaked at 3–6 h of Dox treatment 
in wild-type MEFs, and this was substantially attenuated in CBP/
p300−/− MEFs (Fig. 6f). Meanwhile, H3K9Ac was not affected by 
the knockout of CBP/p300 (Fig. 6f). ChIP–qPCR analysis further 
revealed that CBP/p300 is essential for Dox-induced increases in 
H3K18Ac and H3K27Ac levels at the promoters of prototypical 
UPRmt genes (for example, Hspd1 and Hspa9) (Fig. 6g).

Liver is the central hub for metabolism and we have previously 
found that hepatocytes respond robustly to Dox treatment13. We thus 
further tested the impact of Dox treatment in the human hepatoma 
cell line HepG2. Similar to the effect of CBP/p300 knockout, the  
induction of multiple prototypical UPRmt transcripts upon Dox treat-
ment was abolished by the CBP/p300 KAT activity inhibitor A-485 
(Fig. 6h). RNA-seq analysis revealed that the expression of a much 
smaller number of transcripts was altered upon Dox treatment in 
A-485-treated cells, compared with that in control cells (Extended 
Data Fig. 6d,e). Moreover, Dox treatment induced 299 transcripts 
(log2[fold change] > 0.5; adjusted P < 0.05), and the induction of 163 
(54.5%) of them was abrogated by A-485 (Extended Data Fig. 6f and 
Supplementary Table 6). Notably, in addition to the Gene Ontology 
terms found in MEFs (for example, aminoacyl-tRNA synthetase 
and mitochondrion), the Dox-induced transcripts in HepG2 cells 
were also enriched for innate immunity and response to exogenous 
double-stranded RNA, containing 12 genes (two genes belonged to 
both terms), and seven of them were dependent on CBP/p300 activ-
ity for induction (Fig. 6i and Supplementary Table 6). Finally, forced 
expression of wild-type p300, but not the KAT activity-defective 
mutant of p300, is sufficient to induce the expression of UPRmt and 
Dox-induced immune response genes (for example, DDX21 and 
SLC3A2) in HepG2 cells (Fig. 6j). Taken together, these results point 
to a conserved and central role of CBP/p300 in MSR regulation  
in mammals.

Discussion
Here, by employing multilayered genetic and pharmacological 
approaches applied to C. elegans, mouse and human populations 
and cell lines, we provide strong evidence that CBP-1 (or the mam-
malian equivalent CBP/p300) acts downstream of the demethylases 
JMJD-3.1 and JMJD-1.2 (or mammalian KDM6B/PHF8), switching 
the transcription-repressive histone methylation marks (for exam-
ple, H3K27Me3) to the transcription-active acetylation marks (for 
example, H3K27Ac), and thereby relays the mitochondrial stress 
signal to the transcriptional induction of diverse UPRmt genes in C. 
elegans as well as in mammals (Fig. 7). Notably, many of the CBP-
1- or CBP/p300-dependent UPRmt effectors positively contribute 
to mitochondrial function recovery, improved immune response, 

enhanced proteostasis against Aβ aggregation, and lifespan exten-
sion. In support of these findings, changes in CBP/p300 function 
tightly associate with multiple aging/mitochondrial-related dis-
eases, including Alzheimer’s disease and Huntington’s disease57–59, 
and forced expression or pharmacological activation of CBP/p300 
is sufficient to ameliorate neurodegenerative phenotypes in both 
mouse and Drosophila Alzheimer’s disease models60–62.

How CBP-1 or CBP/p300, as well as the histone demethylases, 
sense mitochondrial stress remains an important direction for 
future work. One possibility is that CBP-1 itself is a downstream 
target that is activated in response to mitochondrial stress, as evi-
denced by increased cbp-1 expression after cco-1 and mrps-5 silenc-
ing (Extended Data Fig. 2c), and after jmjd-3.1 overexpression  
(Fig. 3e). Changes in mitochondrial metabolism may also modulate 
the levels of acetyl-CoA, which acts as a substrate for the acetyl-
transferase activity of KATs including CBP/p300 (refs. 30,32,63).

Of note, despite the fact that we mainly focused on the regula-
tion of H3K27Ac and H3K18Ac upon mitochondrial stress, due 
to the availability of the reagents, it is very likely that a similar 
regulatory mechanism exists as well for other CBP-1- or CBP/
p300-mediated histone acetylation sites32,37 (for example, H4K5Ac; 
Extended Data Fig. 3a), which could also positively contribute 
to chromatin decompaction and transcriptional reactivation44. 
Moreover, CBP/p300 may also affect mitochondrial function and 
stress resistance by targeting proteins besides histones. As a first 
attempt in this direction, we investigated whether ATFS-1 could 
be acetylated by CBP-1. CBP-1 could indeed acetylate ATFS-1 both 
in vivo and in vitro (Extended Data Fig. 7a,b). Using mass spec-
trometry, we identified three acetylation sites in ATFS-1 (Extended 
Data Fig. 7c). Additionally, we investigated which class of histone 
deacetylase (HDAC) is responsible for the deacetylation of ATFS-1.  
Using trichostatin A (TSA; a class I/II HDAC inhibitor) and nico-
tinamide (NAM; a class III HDAC inhibitor), we found that HDACs 
belonging to at least two different classes participate in the deacet-
ylation of ATFS-1 (Extended Data Fig. 7d). Furthermore, it has 
been reported that peroxisome proliferator-activated receptor-γ 
coactivator-1α can be acetylated by p300 and deacetylated by 
Sirt1, serving as an important switch controlling mitochondrial 
biogenesis and function64,65. In another study, p300 was identified 
as a binding partner for ATF4 and could enhance ATF4-mediated 
transcriptional activation through a mechanism independent of its 
acetyltransferase activity66.

In addition to the indispensable role of CBP-1 or CBP/p300 in 
MSR, we have noticed that the basal expression of some UPRmt tran-
scripts also decreased after cbp-1 silencing, CBP/p300 knockout or 
CBP/p300 activity inhibition (Figs. 1j and 6a,h and Supplementary 
Tables 1 and 5), suggesting that CBP/p300 functions in maintaining 
basal UPRmt activity as well. Nevertheless, the distinction between 
basal and stress conditions is somehow artificial, especially consid-
ering that organisms and cells are constantly exposed to multiple 
cues, and different wild C. elegans strains differ with respect to the 
level of UPRmt activation under basal conditions67. Moreover, it is 
likely that some UPRmt genes controlled by CBP-1 or CBP/p300 
may also contribute to basal mitochondrial function. For exam-
ple, the chaperone hsp-60 and its mouse ortholog Hspd1, which 
demonstrated decreased basal H3K18Ac/H3K27Ac enrichment, 
ATFS-1 binding and mRNA expression upon cbp-1 RNAi or CBP/
p300 suppression (Figs. 2k, 3h and 6a,g,h), have been reported to be 
essential for mitochondrial homeostasis even in the basal state27,68. 
It is also noteworthy that we detected increased CBP-1 or CBP/
p300-mediated acetylation marks during mitochondrial stress in 
both promoter and coding regions for a large set of genes (Extended 
Data Fig. 3f and Supplementary Table 3). According to a systematic 
study on mapping the global histone acetylation patterns to gene 
expression in yeast69, hyperacetylation of both intergenic and cod-
ing regions genome wide at histones H3K18 and H3K27 is robustly 
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correlated with active transcription. It is therefore likely that acety-
lation marks in both the promoter and coding regions in our con-
text may contribute to transforming the condensed chromatin into 
a more relaxed structure and thus facilitate transcription29,30,32,44.

Altogether, by applying genetic and pharmacological LOF 
approaches, combined with bioinformatic and mechanistic studies, 
we identified the acetyltransferase CBP-1 as an essential regulator 
for activation of the MSR and, in particular, the UPRmt. The ben-
eficial effects on pathogen infection resistance, protein aggregation 
reduction and lifespan extension caused by mitochondrial pertur-
bations are almost completely dependent on CBP-1 in C. elegans. 
Furthermore, systematic correlation analysis in mouse and human 
populations, as well as LOF studies in mammalian cells, indicate 
that functions of CBP/p300 in UPRmt regulation and longevity are 
also conserved in mammals. Our results thus reveal an evolution-
arily conserved mechanism that coordinates the multiple layers 
of UPRmt regulators to systematically activate the stress responses, 
defend mitochondrial function and promote health and longevity. 
Further studies will have to define whether genetically or pharma-
cologically targeting these CBP/p300-driven MSR pathways can 
have therapeutic applications against mitochondrial-related dis-
eases, pathogen infections and aging.

Methods
C. elegans strains. The Bristol strain (N2) was used as the wild-type strain. SJ4100 
(zcIs13[hsp-6p::GFP]), MQ887 (isp-1(qm150)IV), MQ130 (clk-1(qm30) III), QC118 
(atfs-1(et18)), OP675 (atfs-1::TY1::EGFP::3xFLAG), GMC101 (dvIs100 [unc-
54p::A-beta-1-42::unc-54 3′-UTR + mtl-2p::GFP]) and CL2122 (dvIs15 [(pPD30.38) 
unc-54(vector) + (pCL26) mtl-2::GFP]) were obtained from the Caenorhabditis 
Genetics Center (Minneapolis, Minnesota). Strains with jmjd-3.1 overexpression 
line 1 AUW3 (N2, epfIs3[myo-2p::cfp, jmjd-3.1p::jmjd-3.1]; zcIs13[hsp-6p::gfp]V) 
and line 2 AUW4 (N2, epfIs4[myo-2p::cfp, jmjd-3.1p::jmjd-3.1]; zcIs13[hsp-6p::gfp]V)  
were described previously25. The strain atfs-1(et18); zcIs13[hsp-6p::GFP] was 
generated by crossing the SJ4100 (zcIs13[hsp-6p::GFP]) males with the QC118  
(atfs-1(et18)) early L4 hermaphrodites. Worms were cultured at 20 °C and fed  

with Escherichia coli OP50 on nematode growth media (NGM) plates unless 
otherwise indicated.

RNA interference. Bacterial feeding RNAi experiments were performed as 
described13. RNAi clones were used from either the Ahringer or Vidal library and 
verified by sequencing. Double RNAi experiments were carried out by mixing 
bacterial cultures normalized to their optical densities (OD600) before seeding onto 
NGM plates.

The alternative cbp-1 RNAi clone (cbp-1 RNAi_2) was constructed by PCR  
amplification of cbp-1 complementary DNA (cDNA) from total RNA with  
the following primers: cbp-1_RNAi2_632_Fw (5′-CTCGAGGGTGTGGAAGGT 
GGACGTAG-3′) and cbp-1_RNAi2_632_Rv (5′-AGATCTTCCATTGGGCGCT 
TGATGAT-3′). The PCR product was then ligated into the L4440 empty vector 
and transformed into E. coli HT115 competent cells. The cbp-1 RNAi clone from 
the Ahringer library (cbp-1 RNAi_1) was used for all of the experiments related to 
cbp-1 RNAi unless otherwise indicated.

Lifespan experiments were performed at 20 °C as described previously70. 
Briefly, 75–100 animals were used per condition and scored every other day, and 
those disappeared or exploded at the vulva were censored. All RNAi treatment for 
lifespan started at the maternal L4 stage.

Induction of the UPRmt. For RNAi-induced UPRmt, RNAi bacteria were grown 
in lysogeny broth containing 25 mg ml−1 carbenicillin at 37 °C overnight. The 
bacteria were then seeded onto 6-cm NGM plates with 2 mM isopropyl β-d-
1-thiogalactopyranoside. Dried plates were kept at room temperature overnight to 
allow isopropyl β-d-1-thiogalactopyranoside induction of double-stranded RNA 
expression. L4 worms or synchronized worm eggs were raised on the RNAi plates 
at 20 °C. The F0 worms were then removed the next day if L4 worms were seeded 
the day before. Fluorescent images with the same exposure time for each condition 
were taken after 2–3 d. For antimycin A or Dox-induced UPRmt, antimycin A 
(A8674; Sigma–Aldrich) with a final concentration of 2.5 μM or Dox (D9891; 
Sigma–Aldrich) with a final concentration of 30 μg ml−1 was added to the NGM 
just before pouring the plates.

RNA extraction and RNA-seq analysis. For worm samples, worms were 
synchronized by bleaching. Synchronized worm eggs were plated in NGM plates 
under the described conditions and raised at 20 °C. Worms were harvested after 
2 d (at the L4/young adult stage), washed with M9 buffer three times to remove 
the bacteria, then snap frozen in liquid nitrogen. On the day of the extraction, 
1 ml TriPure Isolation Reagent (11667165001; Roche) was added to each tube. 
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Fig. 7 | Model for CBP-1- or CBP/p300-mediated regulation of MSr and longevity. When the mitochondria are stressed in response to various 
intracellular or extracellular stimuli, CBP-1 (or mammalian CBP/p300) acts downstream of the demethylases JMJD-3.1 and JMJD-1.2 (or mammalian 
KDM6B and PHF8), switching the transcription-repressive histone methylation marks (for example, H3K27Me3) to the transcription-active acetylation 
marks (for example, H3K27ac), and thereby relays the mitochondrial stress signal to the transcriptional induction of diverse uPrmt genes in C. elegans 
as well as in mammals. Many of these uPrmt effectors play positive roles in the recovery of mitochondrial function, improved immune response and 
proteostasis, and lifespan extension.
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The samples were then frozen and thawed quickly eight times with liquid nitrogen 
and a water bath to rupture the cell membranes. RNA was then extracted using 
a column-based kit from Macherey–Nagel (740955.250). For mammalian cell 
samples, cells were directly dissolved in 1 ml TriPure Isolation Reagent and 
extracted using the kit from Macherey–Nagel (740955.250). RNA-seq was 
performed by the Beijing Genomics Institute with the BGISEQ-500 platform.

RNA-seq data analysis for worm samples was performed using the R 
version 3.6.3 (https://www.r-project.org/). Briefly, after sequencing on the 
BGISEQ-500 platform, the raw reads were filtered by removing adaptor sequences, 
contamination and low-quality (Phred quality < 20) reads. FastQC71 was used to 
verify the quality of the sequence data. Sequenced reads were mapped to the worm 
genome Caenorhabditis_elegans.WBcel235.89 with STAR aligner version 2.6.0a72. 
Reads were counted using htseq-count version 0.10.0 (ref. 73), using the following 
flags: -f bam -r pos -s no -m union -t exon -i gene_id. Differential expression 
of genes was calculated using limma-voom74,75. The genes with a Benjamini–
Hochberg adjusted P value of <0.05 were defined as statistically significant. 
Genes with significantly upregulated expression (log2[fold change] > 0.5; adjusted 
P < 0.05) in the cco-1 RNAi condition that were then downregulated by more than 
25% of the log2[fold change] after cbp-1 or atfs-1 RNAi co-treatment, compared 
with the log2[fold change] of the cco-1 RNAi condition, were considered CBP-1 or 
ATFS-1 dependent. Genes with significantly downregulated expression (log2[fold 
change] < −0.5; adjusted P < 0.05) were defined as downregulated genes. For 
MEFs or human HepG2 cell samples, a similar analysis procedure was used except 
that the Mus_musculus.GRCm38.95 or Homo_sapiens.GRCh38.95 genome was 
used for mapping. Genes with upregulated expression (log2[fold change] > 0.5; 
adjusted P < 0.05) in the Dox treatment condition that were then downregulated 
by more than 25% of the log2[fold change] after CBP/p300 knockout or A-485 
treatment, compared with the log2[fold change] of the wild-type Dox condition, 
were considered CBP/p300 dependent or CBP/p300 activity dependent. Functional 
clustering was performed using the Database for Annotation, Visualization  
and Integrated Discovery76. Heatmaps were generated using Morpheus  
(https://software.broadinstitute.org/morpheus).

Quantitative PCR with reverse transcription (RT–qPCR). Worms were raised 
and total RNA was isolated as described for the RNA-seq studies. cDNA was then 
synthesized from total RNA using the Reverse Transcription Kit (205314; Qiagen). 
RT–qPCR was performed using the LightCycler 480 SYBR Green I Master kit 
(04887352001; Roche). The primers used for RT–qPCR are listed in Supplementary 
Table 7. Primers for worm pmp-3, mouse Actin and human ACTB were used as 
normalization controls.

Western blotting. For worm samples, proteins were extracted as described 
previously13. Western blotting was performed with antibodies against green 
fluorescent protein (GFP) (1:1,000; 2956; CST), actin (1:2,000; A5441; Sigma–
Aldrich), H3K18Ac (1:1,000; 07-354; Merck), H3K27Ac (1:1,000; ab4729; Abcam), 
H3K9Ac (1:1,000; 06-942; Merck), H3K4Ac (1:1,000; Ab176799; Abcam), histone 
3 (1:1,000; 9715; CST), tubulin (1:2,000; T5168; Sigma–Aldrich), H3K27Me3 
(1:1,000; 07-449; Millipore), H3K27Me2 (1:1,000; ab24684; Abcam), H3K27Me1 
(1:1,000; 07-448; Millipore), H3K9Me1 (1:1,000; 07-450; Millipore), H3K4Me3 
(1:1,000; 07-473; Millipore), histone 4 (1:1,000; sc-10810; Santa Cruz), H4K5Ac 
(1:1,000; ab51997; Abcam), β-amyloid 1–16 (6E10) (1:1,000; 803001; BioLegend), 
HA-tag (1:2,000; 3724; CST), Flag-tag (1:1,000; F7425; Sigma–Aldrich), Myc-tag 
(1:2,000; sc-40; Santa Cruz), GST-tag (1:1,000; 2625; CST), AcK (1:1,000; 9441; 
CST), AcK (1:1,000; 9814; CST) and HRP-labelled anti-rabbit (7074; CST) and 
anti-mouse (7076; CST) secondary antibodies.

ChIP and ChIP-seq of worms. ChIP of worms was performed as described77, 
with slight modifications. Briefly, worms were synchronized by bleaching. 
Synchronized worm eggs were plated in NGM plates under the described 
conditions and raised at 20 °C. Worms were harvested after 2 d (at the L4/young 
adult stage) and washed with M9 buffer three times. Worms were then fixed 
with 1% formaldehyde in phosphate-buffered saline for 30 min and quenched by 
glycine. Immunoprecipitations were carried out using antibodies against H3K18Ac 
(1:100; 07-354; Merck) or H3K27Ac (1:100; ab4729; Abcam). For ChIP of ATFS-
1, the OP675 (atfs-1::TY1::EGFP::3xFLAG) worm strain and anti-Flag M2 beads 
(A2220; Sigma–Aldrich) were used. The primers used for ChIP–qPCR are listed in 
Supplementary Table 7.

For ChIP-seq, DNA fragments were sequenced using the BGISEQ-500 platform.  
Data analysis was performed using R version 3.6.3 (https://www.r-project.org/). 
FastQC71 was used to verify the quality of the sequence data. Alignment was 
performed against the C. elegans genome Caenorhabditis_elegans.WBcel235.89 
following the Bowtie 2 (version 2.3.5)78 manual guidelines with default parameters. 
SAMtools (version 1.4.1)79 was used to sort, filter and index the obtained 
alignments. Peak calling was then performed using MACS2 (version 2.1.2)80 
against the default Poisson distribution to generate raw counts for each sample, or 
between samples of interest for comparison. The peak scores between treatment 
and control for each histone modification were generated with an associated 
FDR value (a default FDR value of 0.05). The quality of alignment and peaks was 
assessed using ChIPQC (version 1.18.2)81 before proceeding with the analysis.  

Read counts per peak were obtained using BEDTools (version 2.26.0)82 and 
SAMtools (version 1.4.1)79 packages. Intersection between sets and their associated 
P values was computed using the SuperExactTest7 (version 1.0.6)83 package. 
Genome tracks were revealed by Integrative Genomics Viewer (version 2.8.0)84. 
The two tracks were shown with the same total count range between basal and 
mitochondrial stress conditions for each gene.

P. aeruginosa infection assay. The P. aeruginosa PA14 slow-killing assay was 
performed as described85. Briefly, P. aeruginosa overnight cultures were seeded 
onto slow-killing NGM agar plates with 0.35% peptone. Plates were allowed to dry 
for 20 min at room temperature, then incubated at 37 °C for 24 h and allowed to 
equilibrate at 25 °C for another 24 h. Synchronized worm eggs were raised on RNAi 
bacteria, as indicated in the figure captions, until they reached the L4 stage. The 
worms were then transferred to P. aeruginosa slow-killing plates and counted every 
12 h. Animals were scored as dead if they failed to respond when gently punched 
with a worm picker. In total, 80–100 worms were used for each condition, and 
those disappeared or exploded at the vulva were censored. Each experiment was 
performed at least twice, and the log-rank (Mantel–Cox) statistical test was used  
to calculate P values.

Cell culture and drug treatment. HepG2 cells were obtained from the American 
Type Culture Collection. Cells were validated to be free of Mycoplasma 
contamination and maintained in Dulbecco’s modified Eagle’s medium containing 
4.5 g glucose per liter and 10% fetal bovine serum. Immortalized Crebbpfl/fl; Ep300fl/fl  
MEFs stably expressing Cre-ERT2 were kindly provided by P. K. Brindle36. The 
floxed CBP/p300 alleles were deleted as previously described37. Briefly, Crebbpfl/

fl; Ep300fl/fl MEFs were treated with 2 μM 4-hyroxy-tamoxifen (H7904; Sigma–
Aldrich), the media was changed and fresh 4-OHT was added every 12 h for 
2 d. Cells were cultured for an additional 1 d to allow for complete depletion 
of CBP/p300 protein. For transfection, plasmids expressing human full-length 
wild-type p300 (89094; Addgene) and the p300 acetyltransferase activity-defective 
mutant (89095; Addgene)86 were purchased from Addgene and transfected with 
Lipofectamine 3000 Reagent (L3000015; Thermo Fisher Scientific). The CBP/
p300 acetyltransferase inhibitor A-485 (6387; Tocris) and bromodomain inhibitor 
PF-CBP1 (S8180; Selleck Chemicals) were dissolved in dimethyl sulfoxide (DMSO) 
and treated with final concentrations as described in the figure captions. For the 
treatment of worms with CBP/p300 inhibitors, A-485 or PF-CBP1 was added to 
the NGM agar medium, with final concentrations as indicated, just before pouring 
the plates.

ATFS-1 acetylation analysis. For in vivo analysis, plasmids expressing full-length 
ATFS-1 or the HAT domain of CBP-1 (amino acids 803–1620) were created 
by PCR amplification from total worm cDNA and verified by sequencing. 
Transfection was performed with Lipofectamine 3000 Reagent (L3000015; Thermo 
Fisher Scientific) in HEK293T cells. TSA (5 μM; T8552; Sigma–Aldrich) and/
or NAM (10 mM; N0636; Sigma–Aldrich) were added to the culture medium 
8 h before harvesting. For in vitro analysis, the HAT domain of CBP-1 (amino 
acide 803–1620) was subcloned to the GST-tag-containing pGEX-4T-1 vector 
and purified from the BL21 bacteria. An in vitro acetylation assay was carried 
using 50-μl reactions containing 50 mM HEPES (pH 8.0), 10% glycerol, 1 mM 
dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 5 μM TSA, 10 mM NAM, 
100 μM acetyl-CoA, immune-purified ATFS-1 from HEK293T cells and GST–
HAT–CBP-1. After incubation at 30 °C for 1 h, the reaction was stopped by the 
addition of 10 μl 5× sodium dodecyl sulfate sample buffer. The samples were 
then subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis and 
western blotting.

Bioinformatics analyses. All BXD, LXS and GTEx transcriptome results for 
bioinformatics analyses were downloaded from GeneNetwork (http://www.
genenetwork.org) and analyses were performed as described in previous 
studies43,52,53. The BXD transcriptome datasets used to establish genetic correlations 
were UTHSC Affy MoGene 1.0 ST Spleen (Dec10) RMA Males, INIA_Pituitary_
RMA_M_0612, INIA Adrenal Affy MoGene 1.0 ST (Jun12) RMA Males, Eye 
M430v2 (Sep08) RMA, Hippocampus Consortium M430v2 (Jun06) RMA and 
INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) Male. The IDs for the lifespan 
datasets were 12564, 17475, 18435, 19422 and 19424. The LXS transcriptome 
datasets used were UCAMC LXS Whole Brain Saline RNA Sequence (Feb16) 
FPKM and VCU LXS PFC Sal M430A 2.0 (Aug06) RMA. For human genetic 
correlation analyses, the GTEx v8 All Tissues dataset was used54. Pearson’s r was 
used for measuring the correlations. Correlation heatmaps were generated using 
Morpheus (https://software.broadinstitute.org/morpheus). The Circos plot was 
generated using Circos (http://www.circos.ca)87.

Statistics and reproducibility. No statistical methods were used to predetermine 
sample sizes but our sample sizes are similar to those reported in previous 
publications13,50,70. Samples were allocated to groups or treatments randomly, 
and steps were taken to avoid batch effects. Experimental conditions were not 
blinded. However, data analysis was performed blind whenever possible. No data 
were excluded from the analysis, except for the C. elegans lifespan and survival 
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experiments (the reasons for censoring, which were pre-established before the 
beginning of the experiment13,70, were the exploded vulva phenotype or worms 
that crawled off the plate). All individual data points are shown in the figures. The 
data distribution was assumed to be normal but this was not formally tested. All of 
the experiments, particularly the representative micrographs shown in Figs. 1a–e 
and 3a,f and Extended Data Fig. 1b–d,f–h,k–n, were repeated at least twice, and 
similar results were found. Survival analyses were performed using the Kaplan–
Meier method and the significance of differences between survival curves was 
calculated using the log-rank (Mantel–Cox) test. Differences between two groups 
were assessed using two-tailed unpaired Student’s t-tests. Analysis of variance 
(ANOVA) followed by Tukey’s post-hoc test (one-way ANOVA for comparisons 
between groups; two-way ANOVA for comparisons of the magnitude of changes 
between different groups from different cell lines or treatments) was used when 
comparing more than two groups, P values were adjusted for multiple comparisons. 
GraphPad Prism 6 was used for all statistical analyses. Fiji (version 1.47b) was used 
to quantify the western blots shown in Fig. 2a–c and Extended Data Fig. 3a.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The RNA/DNA sequencing datasets have been deposited in the National Center 
for Biotechnology Information Gene Expression Omnibus database with the 
accession numbers GSE131611 (for worm RNA-seq), GSE148328 (for worm 
ChIP-seq), GSE131613 (for MEF RNA-seq) and GSE156830 (for human HepG2 
RNA-seq). Functional clustering in this study was performed using the Database 
for Annotation, Visualization and Integrated Discovery, version 6.8 (https://
david.ncifcrf.gov/home.jsp). The BXD, LXS and GTEx transcriptome datasets 
used in this study are available from the GeneNetwork database (https://www.
genenetwork.org). All data supporting the findings of this study are available from 
the corresponding author upon request. Source data are provided with this paper.
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Extended Data Fig. 1 | inhibition of CBP-1 by rNAi or pharmacological inhibitors attenuates uPrmt activation in C. elegans. a, all putative lysine 
acetyltransferases (KaTs) in C. elegans and their human homologues. The worm KaTs were validated/identified by searching the C. elegans protein 
database for proteins with a conserved acetyltransferase domain, and high amino acid sequences identities of the known human KaTs30. b, role of KaTs in 
uPrmt activation in C. elegans. hsp-6p::gfp worms were fed with control (ev) or cco-1 (40%) rNai in combination with rNai targeting different KaTs (60%). 
c, d, cbp-1 rNai attenuates the uPrmt activation induced by cco-1 (c) or mrps-5 (d) rNai in a dose-dependent manner. rNai targeting cco-1 or mrps-5 
occupied 40%. cbp-1 rNai occupied 10-60%. Control rNai was used to supply to a final 100% of rNai for all conditions. e, Schematic diagram showing 
the different regions regulated by the two different cbp-1 rNai, and the two CBP/p300 inhibitors (PF-CBP1 and a-485). KIX, kinase-inducible domain 
interacting domain; Br, bromodomain; HaT, histone acetyltransferase domain; a.a., amino acids; n.t., nucleotides. f, The alternative cbp-1 rNai (cbp-1_2) 
also inhibits uPrmt activation. rNai targeting mrps-5 or spg-7 occupies 40%, cbp-1 rNai occupies 25%. g, a-485 attenuates uPrmt activation induced  
by mrps-5 rNai in a dose-dependent manner. hsp-6p::gfp worms were fed with control or mrps-5 rNai (40%), in combination with 0-20 μM a-485.  
h, i, rNai that specifically targets cbp-2 or cbp-3 failed to abolish uPrmt activation in hsp-6p::gfp worms. Photos (h) and qrT-PCr-results (n = 4 biologically 
independent samples) (i) of hsp-6p::gfp worms fed with control, cco-1 (40%), cbp-1 (25%), cbp-2 (ahringer library) or cbp-3 rNai. error bars denote SeM. 
Statistical analysis was performed by two-tailed unpaired Student’s t-test. j, Schematic diagram showing the protein structure of CBP-1, CBP-2 and CBP-3.  
The numbers in red indicate the amino acid sequence identities between two proteins in comparison. k–m, cbp-1 rNai attenuates the uPrer activation 
induced by tunicamycin (5 μg/ml) (k), hsp-3 (l) or enpl-1 (m) rNai in hsp-4p::gfp worms. rNai targeting hsp-3 or enpl-1 occupies 40%, cbp-1 rNai 
occupies 25%, atfs-1 rNai occupies 60%. n, cbp-1 rNai does not affect the cytosolic uPr (uPrCyT)/heat shock response activation induced by heat shock. 
hsp16.2p::gfp reporter worms were fed with different percentages of cbp-1 rNai as indicated. as positive control, heat shock for 8 h at 31 °C could induce 
the uPrCyT and cbp-1 rNai did not block this response. Scale bars, 0.3 mm.
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Extended Data Fig. 2 | uPrmt genes dependent or independent of CBP-1 and ATFS-1 for expression. a, Principal-component analysis (PCa) of the 
rNa-seq profiles of worms treated with the indicated rNai. b, Diagram of genes up-regulated after cco-1 rNai, in common with genes up-regulated  
after mrps-5 rNai according to the rNa-seq data. c–f, qrT-PCr-results of indicated genes in hsp-6p::gfp worms fed with control (ev), cco-1, mrps-5,  
cbp-1 or atfs-1 rNai (n = 4 biologically independent samples). rNai targeting cco-1 or mrps-5 occupies 50%, cbp-1 occupies 25%, atfs-1 occupies 50%.  
g, qrT-PCr-results of hsp-6p::gfp worms fed with control (ev), spg-7, timm-23, tomm-40, cts-1 or dlst-1 rNai (n = 4 biologically independent samples). 
uPrmt genes dependent on both CBP-1 and aTFS-1 for induction according to the rNa-seq dataset (as summarized in Fig. 1g) are highlighted in red. Genes 
only dependent on CBP-1, but not aTFS-1, are highlighted in blue. h, Diagram of the down-regulated genes after single cco-1 rNai (orange), in common 
with down-regulated (blue) or up-regulated (pink) genes after single cbp-1 rNai according to the rNa-seq data. i, j, Functional clustering of the 709 (i) 
and 190 (j) genes as indicated in (h). k, Diagram of genes down-regulated after cco-1 rNai, in common with genes down-regulated after mrps-5 rNai 
according to the rNa-seq data. error bars denote SeM. Statistical analysis was performed by aNOVa followed by Tukey post-hoc test.
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Extended Data Fig. 3 | Mitochondrial stress increases CBP-1-mediated histone acetylation at the loci of uPrmt, but not uPrEr or uPrCYT genes.  
a, Western blots of hsp-6p::gfp worms fed with control, cbp-1, atfs-1, cco-1 or mrps-5 rNai. rNai targeting cbp-1 occupies 25%, atfs-1, cco-1 or mrps-5 
occupies 50%. b-e, Genome tracks showing the ChIP-seq analysis for H3K27ac and H3K18ac over the genomic loci of gpd-2 (b), hsp-3 (c), hsp-4 (d) and 
hsp-16.2 (e) in worms fed with control or cco-1 rNai. The two tracks were shown with the same total count range between basal and mitochondrial stress 
condition for each gene. f, Summary of the distribution analysis of the 265 increased H3K18ac/H3K27ac peaks on the 134 uPrmt genes (as indicated in 
Fig. 2d) in response to mitochondrial stress. For uncropped gel source data, see Source extended Data Fig. 3.
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Extended Data Fig. 4 | rNAi of cbp-1 caused a severe developmental delay in the worm Alzheimer’s disease model GMC101, but not in the control 
CL2122 strain. representative photos of CL2122 or GMC101 worms fed with control or cbp-1 (10% or 20%) rNai since maternal L4 stage. The 
developmental stage and body length of the F1 progeny were quantified at Day 4 after hatching (n = 25 worms for each condition). Conditions with 20% 
cbp-1 rNai were not quantified as most of the eggs failed to hatch in GMC101 worms fed with 20% cbp-1 rNai. Scale bar, 1 mm. error bars denote SeM. 
Statistical analysis was performed by aNOVa followed by Tukey post-hoc test.
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Extended Data Fig. 5 | CBP/p300 expression positively correlates with Kdm6b/Phf8, uPrmt transcripts and lifespan in mouse populations. a, Pearson’s 
correlation co-expression heat-map for CBP/p300, Kdm6b/Phf8 and uPrmt genes in hippocampus and hypothalamus of the BXD mouse genetic reference 
population43,52. Positive and negative correlations are indicated in red and blue, respectively. The intensity of the colors corresponds to correlation 
coefficients. b, Pearson’s correlation co-expression heat-map for CBP/p300, Kdm6b/Phf8 and uPrmt genes in the brain (whole brain) and prefrontal 
cortex of the LXS mouse genetic reference population53. c, Positive correlations between lifespan and CBP or p300 transcript levels in hippocampus and 
hypothalamus of BXD mice (Pearson’s r, two-sided). each dot indicates an independent BXD strain.
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Extended Data Fig. 6 | An essential role of CBP/p300 and CBP/p300 acetyltransferase activity in uPrmt activation in mammalian cells.  
a, Multidimensional scaling (MDS) plot of the rNa-seq profiles of wild-type (WT) and CBP/p300−/− MeFs treated with or without Dox (30 μg/ml) for  
24 h. Note the decreased distance between Dox-treated and un-treated condition in the CBP/p300−/− background compared to that in WT background.  
b, CBP/p300−/− MeFs are insensitive to the treatment of mitochondrial stress inducer Dox. Volcano plots showing the effect of Dox treatment in wild-type 
(WT) (left) or CBP/p300−/− (right) MeFs on gene expression. FC, fold change. Genes that were up-regulated (log2FC > 0.5, adjusted P < 0.05) during 
Dox treatment were highlighted in red. Genes that were down-regulated (log2FC < -0.5, adjusted P < 0.05) were highlighted in blue. c, Heat-map of 
the representative uPrmt genes dependent on CBP/p300 for induction in response to Dox treatment in WT and CBP/p300−/− (KO) MeFs, according to 
the rNa-seq data. The heat-map was shown in log2FC values. d, MDS plot of the rNa-seq profiles of HepG2 cells treated with or without CBP/p300 
acetyltransferase activity inhibitor a-485 (5 μM) and/or Dox (30 μg/ml) for 24 h. e, The CBP/p300 catalytic inhibitor a-485 attenuates the effect of Dox 
on gene expression in HepG2 cells. Volcano plots showing the effect of Dox on gene expression of HepG2 cells in control (DMSO) (left) or a-485 (right) 
treatment background. FC, fold change. Genes that were up-regulated (log2FC > 0.5, adjusted P < 0.05) during Dox treatment were highlighted in red. 
Genes that were down-regulated (log2FC < -0.5, adjusted P < 0.05) were highlighted in blue. f, Diagram of the uPrmt genes that are dependent (orange) or 
independent (grey) on CBP/p300 activity in response to Dox treatment in HepG2 cells, according to the rNa-seq data with a-485.
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Extended Data Fig. 7 | ATFS-1 can be acetylated by CBP-1 and affected by both class i/ii and class iii HDACs. a, aTFS-1 was acetylated by CBP-1 in vivo. 
Flag-tagged aTFS-1 was expressed with or without CBP-1 acetyltransferase domain (CBP-1-HaT) in HeK293T cells, immunoprecipitated with anti-Flag 
antibody and analyzed by western blots. TCL, total cell lysate. b, aTFS-1 was acetylated by CBP-1 in vitro. Bacterially expressed GST tagged CBP-1-HaT was 
incubated with Flag-aTFS-1 with or without acetyl-Coa (ac-Coa) and immunoblotted as indicated. c, Schematic diagram showing the protein structure of 
aTFS-1 and the acetylated sites identified by mass spectrometry. MTS, mitochondrial targeting sequence; Srr, Serine-rich region; NLS, Nuclear localization 
signal; LZD, Leucine zipper domain. d, HeK293T cells transfected as indicated were treated with or without TSa (class I/II HDaC inhibitor), or NaM (class 
III HDaC inhibitor) 8 h before harvesting, and analyzed by western blots. For uncropped gel source data, see Source extended Data Fig. 7.
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