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Proteomes bridge between genotype and phenotype, and are 
important for both basic and data-driven biology, biotech-
nology and systems medicine1–3. Indeed, proteins account 

for more than two-thirds of drug targets4. Proteomes are, however, 
inherently complex, presenting analytical challenges5. Advances 
in mass spectrometry instrumentation, chromatography, acquisi-
tion methods, data analysis strategies and the introduction of ion 
mobility devices have increased the depth in single-shot proteome 
measurements6–12. However, the requirements of quantitative biol-
ogy, precision medicine and epidemiology are driving a need to 
increase throughput, to improve consistency and precision, to facil-
itate longitudinal studies and to make data acquired across labo-
ratories more comparable2,13,14. Larger, systematic experiments, and 
more complete data matrices, would also promote the application of 
advanced statistical methods and machine learning in the analysis 
of biological and medical problems15–17.

A central challenge is to raise throughput in proteomic measure-
ments without compromising identification numbers, quantitative 
precision and data completeness. Here we report a DIA method, 
Scanning SWATH, and software algorithms dedicated to the analy-
sis of highly complex samples measured with short chromatographic 
gradients in bottom-up proteomics. First, Scanning SWATH adds a 
new dimension to DIA–MS data that is derived from the use of a 
‘sliding’ quadrupole (Q1), that was first introduced as part of the 
SONAR method18,19. In Scanning SWATH, the scanning dimension 
is exploited to assign precursor masses to MS/MS traces, which is 
not possible in conventional DIA methods. Scanning SWATH hence 
combines the advantages of data-dependent and -independent pro-
teomic acquisition techniques. Second, in Scanning SWATH, Q1 
scans are completed in a shorter time than the stepwise acquisition 

in conventional SWATH20,21 because there is no need to empty the 
collision cell between steps.

We demonstrate that the combination of Scanning SWATH and 
high-flow chromatography (800 µl min–1) generates a technology 
platform for ultra-fast, yet quantitatively precise, proteome experi-
ments. This setup allows the processing of several hundred samples 
per day per mass spectrometer, using chromatographic gradients 
at a minute or even a sub-minute scale. We show that enhanced 
throughput does not come at the expense of quantitative precision. 
Indeed, we report coefficient of variation (CV) values that are equal 
to or better than those for other proteomic techniques of consider-
ably lower throughput. We illustrate the application of ultra-fast pro-
teomics for capturing the response of cytostatic and antifungal drugs 
(statins, azoles and antifolates) acting on yeast, for mode-of-action 
prediction using the proteome, in addition to compound-specific 
effects. Moreover, we demonstrate that proteomic gradients as fast 
as 60 s allow for classification of disease severity in COVID-19 
patients on the basis of their plasma proteomes, and we identify a 
panel of known and new COVID-19 severity biomarkers.

Results
The scanning quadrupole creates a new data dimension. To date, 
one disadvantage of SWATH–MS over data-dependent acquisition 
(DDA) techniques has been a lack of precursor mass assignment 
to MS/MS traces20. Continuous movement of the quadrupole in 
Scanning SWATH results in a time dependency of the fragment sig-
nal. The signal of each MS/MS feature first appears and then disap-
pears when the leading and trailing margins of the sliding isolation 
window pass the precursor mass, respectively (Fig. 1b). This scan-
ning dimension is complementary to the retention time dimension, 

Ultra-fast proteomics with Scanning SWATH
Christoph B. Messner1,2,9, Vadim Demichev   1,2,3,9, Nic Bloomfield4, Jason S. L. Yu1, Matthew White1,  
Marco Kreidl1, Anna-Sophia Egger1, Anja Freiwald2,5, Gordana Ivosev4, Fras Wasim4, 
Aleksej Zelezniak1,6, Linda Jürgens7, Norbert Suttorp7, Leif Erik Sander   7, Florian Kurth   7,8, 
Kathryn S. Lilley   3, Michael Mülleder5, Stephen Tate4 and Markus Ralser   1,2 ✉

Accurate quantification of the proteome remains challenging for large sample series and longitudinal experiments. We report a 
data-independent acquisition method, Scanning SWATH, that accelerates mass spectrometric (MS) duty cycles, yielding quan-
titative proteomes in combination with short gradients and high-flow (800 µl min–1) chromatography. Exploiting a continuous 
movement of the precursor isolation window to assign precursor masses to tandem mass spectrometry (MS/MS) fragment 
traces, Scanning SWATH increases precursor identifications by ~70% compared to conventional data-independent acquisi-
tion (DIA) methods on 0.5–5-min chromatographic gradients. We demonstrate the application of ultra-fast proteomics in 
drug mode-of-action screening and plasma proteomics. Scanning SWATH proteomes capture the mode of action of fungistatic 
azoles and statins. Moreover, we confirm 43 and identify 11 new plasma proteome biomarkers of COVID-19 severity, advancing 
patient classification and biomarker discovery. Thus, our results demonstrate a substantial acceleration and increased depth in 
fast proteomic experiments that facilitate proteomic drug screens and clinical studies.

Nature Biotechnology | www.nature.com/naturebiotechnology

mailto:markus.ralser@crick.ac.uk
http://orcid.org/0000-0002-2424-9412
http://orcid.org/0000-0002-0476-9947
http://orcid.org/0000-0002-3807-473X
http://orcid.org/0000-0003-0594-6543
http://orcid.org/0000-0001-9535-7413
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-021-00860-4&domain=pdf
http://www.nature.com/naturebiotechnology


Articles Nature Biotechnology

because it allows one to distinguish coeluting peptides with differ-
ent precursor masses and to assign precursor masses to each frag-
ment ion (Fig. 1, lower).

To make the scanning dimension exploitable, the acquired 
Scanning SWATH data are written into defined m/z bins by sum-
ming all time-of-flight (TOF) pulses that overlap with the respec-
tive precursor range (Fig. 1c). The resulting triangular ‘Q1 profiles’ 
are then mapped to m/z coordinates by calibrating on known 
masses and aligning the Q1 profiles with the respective MS1 mass 
(Methods). To exploit the Q1 profiles in proteomic experiments, we 
developed open-source algorithms and made them broadly accessi-
ble by including them in the open-source DIA–NN software suite22. 
DIA–NN makes use of the scanning dimension by calculating 
15 scores that assess (1) the similarity of the Q1 profiles of the frag-
ments and the nonfragmented precursor (2) the Q1 profile shapes, 
and (3) the relation of the centroided Q1 profile and the expected 
precursor mass (Supplementary Fig. 1 and Methods). These scores 
are then analyzed by a deep neural network (NN) classifier used 
in DIA–NN22, to assign confidence scores to peptide–spectrum 
matches and thus obtain q values (Supplementary Fig. 1).

To test to what extent the use of the Q1 dimension improves 
true precursor identification from complex DIA spectra, we 
separated 10 µg of a trypsin-digested human cell line (K562) on 

a 5-min, high-flow LC gradient introduced recently as part of 
a high-throughput proteomics workflow23. We used a 10-m/z 
Scanning SWATH window size because this yields a good com-
promise between proteomic depth and quantification precision 
(Methods and Supplementary Fig. 2a). Moreover, we experimen-
tally determined the false discovery rate (FDR) using a two-species 
spectral library method22,24 (Methods). In the 5-min gradient, 
Scanning SWATH identified 70% more true-positive precursors 
at 1% FDR than an optimized, conventional SWATH acquisition 
method23 run on the same chromatographic gradient and mass 
spectrometer (Fig. 2a). To illustrate the impact of the additional 
dimension, we highlight the true-positive target human precursor, 
AVVIVDDR(2+), for which the apex of the Q1 profile matches the 
mass of the precursor in the library and thus increases the confi-
dence in this particular identification (Fig. 2b, left). On the other 
hand, the apex of the Q1 profiles corresponding to the extracted 
fragment masses of a false target (Arabidopsis thaliana precursor, 
FDGALNVDVTEFQTNLVPYPR(3+)) does not match the respec-
tive precursor mass (Fig. 2b, right). Therefore, this particular false 
target had a reported q > 0.01 (not identified) when analyzed with 
Scanning SWATH, but was incorrectly called as true-positive using 
conventional SWATH (reported q < 0.01). Thus, use of Q1 profiles 
facilitates a better distinction of true targets from interferences.
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Fig. 1 | Scanning SWATH replaces stepwise precursor selection with a continuously moving quadrupole, thereby adding another dimension to the data 
and shortening duty cycles. a, In conventional SWATH–MS/DIA–MS, a quadrupole selects a relatively wide mass range and the detector collects MS/MS  
spectra for a defined accumulation time. The windows are stepped and overlapping (to compensate for edge effects20). The collision cell needs to be 
emptied after each step. b, In Scanning SWATH, the isolation window slides over the precursor mass range and MS/MS spectra are continuously acquired. 
The continuous movement of the quadrupole results in a time dependency of the fragment intensity. Fragment signals appear when the leading edge of 
the quadrupole passes the precursor m/z and disappear when this falls out of the quadrupole isolation window. c, The acquired raw data are sectioned into 
bins of defined m/z size. Data from TOF pulses that overlap with a certain m/z bin are summed together and written into the respective bin (for example, 
all TOF pulses labeled in red on the diagram are summed together in the respective bin). Therefore, the highest signal for a fragment is in the bin that 
includes the respective precursor mass. In contrast to conventional SWATH, data from each TOF pulse are written into more than one bin, resulting in a 
Q1 profile of triangular shape. d, The Q1 profile provides a fourth dimension in Scanning SWATH data. In conventional SWATH, each fragment mass (mass 
dimension) has a certain intensity (intensity dimension) that is measured along the chromatographic time (retention time dimension). e, In Scanning 
SWATH data, each fragment also gives rise to a Q1 profile (Q1 dimension). f, Different fragments from the same precursor show correlating Q1 profiles (for 
example, green, orange and purple fragments). The apex of the Q1 profile corresponds to the precursor mass, and thus fragments from different precursors 
can be distinguished (for example, green, orange and purple fragments belong to different precursors than the pink fragment).
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Scanning SWATH records precise proteomes with short gradients.  
To increase the throughput capacity in proteomics, we recently 
introduced protocols that use high-flow LC with flow rates of 
several hundred µl min–1, and with gradient lengths of 5 min and 
faster23. With overheads of only 3 min between injections, including 
all washing and equilibration steps, 5-min, high-flow LC gradients 
facilitate a proteomic throughput of 180 samples per day23. We fur-
ther showed that high-flow chromatography also offers other ben-
efits to proteomic experimentation: it provides high peak capacities, 
reduces carryover and improves longitudinal chromatographic and 
electrospray stability, factors that, in turn, lead to increased quanti-
fication precision and data completeness23.

To test the extent to which Scanning SWATH facilitates pro-
teome experiments with fast, high-flow chromatographic gradients, 
we ran linear gradients of length 5, 3, 1 and 0.5 min at a flow rate of 
800 µl min–1. We acquired the data with correspondingly adjusted 
duty cycles (Methods) and injected 5 µg of K562 tryptic digests. With 
Scanning SWATH and cycle times as short as 280 ms (30-s gradient), 
the method recorded on average more than three data points per 
peak at full-width at half-maximum (FWHM), which corresponds 
to more than five points per peak width at base (1.7 × FWHM, ref. 25),  
sufficient for precise quantification in DIA–MS experiments11,26. 
The 30-s gradient quantified 1,937 protein groups at 1% FDR. The 
identification numbers increased to 2,720 protein groups with a 60-s 
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Fig. 2 | Scanning SWATH improves peptide identification in short gradients. a, A human cell line digest (10 µg) was acquired with both the Scanning 
SWATH method (10-m/z window) and a conventional stepped SWATH method23 using a 5-min, high-flow (800 µl min–1) LC gradient. For experimental 
validation of FDR, the data were analyzed with DIA–NN using a two-species library8,22 containing human and A. thaliana precursors (Methods). b, Left: Q1 
profile of fragments corresponding to a true-positive target precursor (human) with a mass of 443.8 m/z (AVVIVDDR(2+)). Right: Q1 profile of fragments 
corresponding to a false target (A. thaliana precursor) with a precursor mass of 799.1 m/z (FDGALNVDVTEFQTNLVPYPR(3+)). c, The number of protein 
groups identified (1% FDR) in a K562 cell lysate with Scanning SWATH and conventional stepped SWATH, using 5-, 3-, 1- and 0.5-min chromatographic 
gradients and adjusted duty cycles (Supplementary Tables 1–3). d, Numbers of precursors (peptides ionized to a specific charge) and peptides (stripped 
sequences) identified (1% FDR) in human cell lysates measured with different acquisition schemes and platforms. A K562 digest was analyzed with 
5-min sSWATH, 1-min sSWATH and 5 min SWATH; 10 µg was injected for the 5-min gradient and 5 µg for the 1-min gradient. To put the results into 
context, we compared them to a publicly available 5-min-gradient human cell line (HeLa) DIA dataset as recorded with an Evosep One system coupled 
to an Orbitrap Exploris 480 with FAIMS (5-min DIA–FAIMS) (PXD016662)27. Project-specific libraries and the same software settings were used for raw 
data analysis (Methods). Data are presented as mean ± s.d. (n = 3 replicate injections). e, Number of protein groups (1% FDR) with at least one or two 
peptide identifications, respectively. Data are presented as mean ± s.d. (n = 3 replicate injections). f, Number of precursors (left) and protein groups (right) 
quantified with CV < 20% and CV < 10% in triplicate injections. CV values were calculated from n = 3 replicate injections.
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chromatographic gradient (cycle time of 310 ms), and to 4,470 pro-
tein groups over 5 min (cycle time of 520 ms) when 5 µg of human 
cell lysate digest was injected (Fig. 2c).

To determine dependency on the amount of sample injected, we 
measured a dilution series of K562 tryptic digests ranging from 10 µg 
to 250 ng with 5-min conventional SWATH and 5-minute Scanning 
SWATH (5-min sSWATH). Scanning SWATH shows overall higher ID 
numbers, even at lower injection levels (Supplementary Fig. 3a,b). We 
further measured a dilution series with microflow LC (5 µl min–1 and 
20-min gradients). Here, Scanning SWATH identified 4,896 human 
protein groups from 1.25 µg of tryptic digest (Supplementary Fig. 3c).

To put the performance of Scanning SWATH into context, we 
illustrate a benchmark in which we compare 5-min sSWATH with 
both 1-min Scanning SWATH (1-min sSWATH) and 5-min con-
ventional stepped SWATH (5-min SWATH) on the same LC–MS 
setup. This benchmark confirmed an increase of 70% in precursor 
identifications (peptides ionized to a specific charge) compared 
to stepped SWATH on the same instrument setup on the 5-min, 
high-flow rate gradient (46,009 versus 26,795) (Fig. 2d). We further 
compared these results with a reference dataset recorded with an 
Orbitrap Exploris 480 instrument (Thermo) with field asymmetric 
ion mobility spectrometry (FAIMS) interface and 5-min separa-
tions on an Evosep One LC system (5-min DIA–FAIMS)27. When 
analyzed with the same software and software settings to render the 
results comparable, the Evosep 5-min DIA–FAIMS study quantified 
15,576 precursors, fewer than the Scanning SWATH precursor iden-
tifications in 20% of the gradient time (60-s experiment, 19,401 pre-
cursors) (Fig. 2d). The Scanning SWATH experiment identified 
5,004 protein groups (corresponding to 4,394 unique proteins, 
detected with proteotypic peptides), while conventional stepped 
SWATH and DIA–FAIMS identified, with a comparable gradient 
length, 3,568 and 3,594 protein groups, respectively (Fig. 2e). Out of 
these, 3,962, 2,753 and 2,380 protein groups were identified with at 
least two peptides in 5-min sSWATH, 5-min conventional SWATH 
and 5-min DIA–FAIMS, respectively.

Scanning SWATH also improves quantification precision, 
expressed as median CV values of 6.4 and 8.8% for all protein 
groups and precursors quantified, respectively. In comparison of 
the same set of protein groups quantified in both Scanning and 
conventional SWATH runs, the former yielded median CV values 
of 4.1% compared to 4.9% for the latter (Supplementary Fig. 2b,c 
shows protein groups and precursors, respectively). In absolute 
numbers, Scanning SWATH quantified 4,317 protein groups (out of 
5,004 identified) with CV < 20% and 3,308 with CV < 10%, while 
conventional SWATH quantified 3,208 with CV < 20% and 2,527 
with CV < 10% (Fig. 2f; left, precursors; right, protein groups).

The quantification precision obtained with Evosep DIA–FAIMS 
using 5-min gradients in the reference dataset27 is substantially low 
compared to the performance of Scanning SWATH (Supplementary 
Fig. 2b,c shows protein groups and precursors). However, we would 
like to highlight caveats in regard to the direct comparison of quan-
tification and identification performance of the high-flow-rate LC 
Scanning SWATH to the Evosep/Exploris DIA data27. While con-
ventional SWATH and Scanning SWATH experiments are directly 
comparable (only the acquisition method differs), the Evosep/
Exploris and high-flow quadrupole time-of-flight (qTOF) platform 
differ in multiple design parameters so that the acquisitions differed 
not only in flow rate and scan mode but also in precursor range, 
cycle time (1 s for Exploris) and in the fact that the Evosep system 
uses a separate solid-phase extraction tip for each sample23,27,28. 
Furthermore, the FAIMS–DIA reference data used a noncommer-
cial mammalian cell line (HeLa) tryptic digest generated with an 
in-house protocol. We have no influence on the design elements, 
but we note that these affect both depth and quantification precision 
and, therefore, that direct comparison is compromised by the fact 
that the platforms differ in multiple parameters.

Scanning SWATH captures drug responses. If proteomics can 
be run at high throughput, it has the potential to be used in drug 
screens as a comprehensive phenotypic readout. Proteomic screen-
ing strategies are particularly attractive for those medical appli-
cations where classic screening approaches have yielded only 
a few hits, such as in the development of antifungals29,30. Despite 
1.6 million people dying each year from invasive fungal infections, 
immense screening efforts to date have yielded only three classes 
of clinically applicable antifungals (azoles, echinocandins and poly-
enes)31,32. To test whether a high-throughput proteomic approach 
could be used for exploratory drug screening, we applied high-flow 
Scanning SWATH to measure proteomes of the single-cellular 
fungus Saccharomyces cerevisiae treated with 16 different drugs 
from three different drug classes (antifolates, statins and azoles; 
Supplementary Table 4) at 10 µM working concentration, which 
is a typical screening concentration in large-scale experiments. 
These specific classes were chosen because of their clinical avail-
ability, well-characterized mode of action, documented resistance 
mechanisms and, considering azoles, their successful application in 
antifungal therapies33–35. Samples were measured in quadruplicate 
and pooled samples were repeatedly injected for quality control. 
Using 5-min, high-flow gradients (7.3 min including column wash 
and equilibration steps; Supplementary Table 5), the measurement 
of 103 proteomes (samples plus controls) was completed within 
13.5 h. On average 1,980 unique proteins (1% FDR) (Supplementary 
Fig. 4a) were identified per run. The yeast proteome, which is less 
complex than the mammalian proteome, was thereby captured at a 
depth comparable to previous yeast proteomic experiments using 
SWATH–MS, with several times longer gradients and nano- or 
microflow-rate chromatography17,36. The proteins were quantified 
with median CV = 8% for instrument control samples (injections 
of the same sample across measurements) (Supplementary Fig. 4b). 
High-flow Scanning SWATH hence facilitated the acquisition of 
proteomes not only in a much shorter time, but indeed also yielded 
substantial gain of precision compared to previous yeast DIA pro-
teomic studies that required weeks to months to process a similar 
number of samples17,37,38.

A principal component analysis (PCA) of differentially 
expressed proteins across each drug class revealed a clear separation 
of drug classes antifolate and statin/azole (Fig. 3a). Furthermore, 
proteomes reflect drug potency within the classes which, in turn, 
is reflected by the number of differentially expressed proteins 
(Supplementary Fig. 4c). For instance, the 10-µM treatment with 
atorvastatin had a much more prevalent impact on the proteome, 
with 287 proteins differentially expressed, compared to treatment 
with lovastatin that resulted in 38 differentially expressed proteins 
(Supplementary Fig. 4c). Furthermore, mapping the affected path-
ways consistently identified the mode of action related to the drug 
class, primarily resulting in the upregulation of associated enzymes 
of the inhibited pathway (Fig. 3b). For example, azoles elicit a 
strong upregulation of multiple proteins involved in the ergos-
terol biosynthesis pathway (Fig. 3d and Supplementary Fig. 4e),  
most notably in the azole target lanosterol 14-alpha demethylase 
(gene product of ERG11) itself, which is in agreement with pre-
vious findings. Consistent with this, although a response in the 
same pathway was also observed in statin-treated cells (Fig. 3d and 
Supplementary Fig. 4d), squalene monooxygenase (a gene product 
of ERG1), which is significantly upregulated following treatment 
with statins, was found to be downregulated in azoles (Fig. 3d,e).  
Thus, although statins and azoles target the same pathway, the 
proteomes reveal class-dependent signatures that permit differ-
entiation of these two drug classes. Indeed, methotrexate induced 
upregulation in proteins primarily related to nucleotide, purine and 
pyrimidine biosynthesis—a clear and different response compared 
to statins/azoles, linking inhibition of dihydrofolate reductase  
(a gene product of DFR1) to nucleotide starvation and cessation of 
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Proteins differentially expressed in at least one of the drug classes (compared to DMSO) were considered (two-sided t-test, adjusted P < 0.01, Benjamini–
Hochberg multiple testing correction82). The quantities were log2 transformed and centered. Drugs with >20 differentially expressed proteins are shown. 
b, Pathway enrichment of proteomic data identified the target pathways. Pathway enrichment among differentially expressed proteins (two-sided t-test, 
adjusted P < 0.01, Benjamini–Hochberg multiple testing correction82) was conducted using hypergeometric testing. c, Proteome responses are drug class 
specific. Differentially expressed proteins in at least one drug class are illustrated as a heatmap. Clustering was performed row-wise but not column-wise. 
Drugs with >20 differentially expressed proteins are shown. d, Differential protein expression varies by drug class, and identifies the targeted pathways 
for azoles (left) and statins (right). Significance (–log10(adjusted P value)) was calculated with a two-sided t-test and is plotted as a function of log2 fold 
changes (ratio of expression levels in drug- and DMSO-treated cells). Proteins in the cholesterol pathway with adjusted P < 0.01 are highlighted and 
labeled with the respective gene name. The Benjamini–Hochberg procedure was used for multiple testing correction82. e, Treatment with azoles and statins 
resulted in down- and upregulation of squalene monooxygenase (gene product of ERG1), respectively. Expression levels are shown as fold changes (ratio of 
expression levels in drug- and DMSO-treated cells). Boxes show the first and third quartiles as well as the median (thick line), and the whiskers extend to 
the most extreme data point that is no more than 1.5× the interquartile range from the box. n = 5 azoles, n = 7 statins. TCA, tricarboxylic acid.
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DNA replication39. The structurally related antifolate, pralatrexate, 
instead induced change in a broader range of pathways additional 
to nucleotide biosynthesis, despite its lower potency (Fig. 3b). 
Each of these drug treatments therefore shows a specific proteome 
response, and drugs from the same class show similar patterns40.

COVID-19 severity classification with 1-min gradients. In addi-
tion to drug-screening approaches, clinical proteomics is a major 
application for fast proteomic methods. Applied to blood plasma 
or serum samples, proteomics can (1) classify patients, (2) iden-
tify biomarkers and (3) provide molecular signatures for diag-
nostic and prognostic models23,24,41,42. Fast proteomic methods are 
specifically relevant during pandemics because they can rapidly 
assess pathomechanisms in an unbiased fashion23,43–46. To demon-
strate the application of ultra-fast proteomic methods for plasma 
proteomics, we processed nondepleted citrate plasma samples from 
a cohort of 30 patients with COVID-19 hospitalized at Charité 
Universitätsmedizin Berlin between 1 and 26 March 2020 (ref. 47),  
and compared their plasma proteomes to those of 15 healthy indi-
viduals. The cohort was relatively well balanced between indi-
viduals suffering from COVID-19 with different levels of severity 
(Supplementary Table 6 and Fig. 4a), graded according to the WHO 
ordinal outcome scale of clinical improvement (score 3, hospital-
ized, no oxygen therapy; score 4, oxygen by mask or nasal prongs; 
score 5, noninvasive ventilation or high-flow oxygen; score 6, 
intubation and mechanical ventilation; score 7, ventilation and 
additional organ support (pressors, renal replacement therapy, 
extracorporeal membrane oxygenation))48. We analyzed citrate 
plasma samples using Scanning SWATH in conjunction with 60-s, 
water-to-acetonitrile chromatographic gradients (3.5 min total run 
time; Supplementary Table 7). We identified on average around 
2,600 precursors (Supplementary Fig. 5a) corresponding to 180 pro-
tein groups (Supplementary Fig. 5b). The achieved proteomic depth 
is hence comparable to precursor identification numbers we previ-
ously acquired with fivefold longer LC gradients and conventional 
SWATH23. Forty-seven of the quantified proteins are approved bio-
markers by the Food & Drug Administration (FDA)49, indicating the 
information richness of the highly abundant plasma protein frac-
tion (Supplementary Table 8). Median protein CV values were 4.4 
and 6.6% for instrument quality control (QC) (repeat injection of 
a pooled digest) and process QC (separately prepared digests from 
the same commercial plasma sample), respectively (Supplementary 
Fig. 5c). This indicates that short measurement times do not com-
promise quantification precision. In parallel, we compared 1-min 
sSWATH with a conventional SWATH method that uses 5-min 
chromatographic gradients23. The same cohort was measured with 
both methods on two different qTOF instruments, and we compared 
the relative abundance changes measured. Although both methods 
resulted in similar quantitative changes, Scanning SWATH achieved 
this with a fivefold shorter gradient than the conventional SWATH 
method (Fig. 4d for selected proteins, Supplementary Fig. 5d for 
all proteins). We further compared relative abundance changes of 
the different precursors (most abundant and second most abun-
dant) from the same protein across all COVID-19 plasma samples 
(Supplementary Fig. 5e). Although not all peptides derived from 
the same protein were expected to correlate with one another (due 
to differential post-translational modification)37,50–52, we obtained a 
linear correlation for the majority of peptide quantities that were 
assigned to the same protein (Supplementary Fig. 5e).

In total, 54 of the quantified proteins were significantly up- or 
downregulated (adjusted P < 0.01) depending on COVID-19 dis-
ease severity (Supplementary Table 9). These characterize the 
host response to the infection, as illustrated by a heatmap group-
ing patients/individuals according to disease severity (WHO score;  
Fig. 4b). Additionally, PCA allows separation of patients according 
to disease severity in the first PC, indicating that the 1-min sSWATH 

runs capture clinical classifiers for COVID-19 severity. Out of the 
54 significantly changed proteins, 43 have previously been related to 
COVID-19 severity23,43,45. We further identified 11 proteins that are 
changing significantly and, to our knowledge, have not previously 
been associated with COVID-19 severity (Fig. 4e). Several of these 
belong to the acute phase response and the complement cascade, 
which are involved in the antiviral host response. For example, we 
detected upregulation of both alpha-2-macroglobulin (gene prod-
uct of A2M) and alpha-2-antiplasmin (gene product of SERPINF2) 
and downregulation of vitamin K-dependent protein S (gene prod-
uct of PROS1), highlighting the role of coagulation in COVID-19 
infections. Alpha-2-macroglobulin and alpha-2-antiplasmin are 
protease inhibitors that inactivate thrombin53 and plasmin54, respec-
tively, while vitamin K-dependent protein S is an anticoagulate 
plasma protein. Moreover, we detected upregulation of complement 
C1q subcomponent subunit C (gene product of C1QC) and down-
regulation of immunoglobulin kappa variable 4–1 (gene product 
of IGKV4-1), both involved in activation of the classical comple-
ment pathway and thus the innate immune response. We found 
downregulation of thyroxine-binding globulin (gene product of 
SERPINA7) and transthyretin (gene product of TTR), both involved 
in binding and transport of thyroid hormones, which is consistent 
with previous studies that found associations of thyroid dysfunction 
with the severity of COVID-19 infection55,56. Further, we observed 
downregulation of serum paraoxonase/arylesterase 1 (gene prod-
uct of PON1), which is associated with the cholesterol-carrying, 
high-density lipoprotein (HDL), a modulator of innate immune 
response and inflammation57–60. This agrees with previous studies 
that related downregulation of serum paraoxonase/arylesterase 1 
with other inflammatory and infectious diseases61,62. Equally, dys-
regulation of HDL-related proteins (such as apolipoproteins) in 
patients with severe COVID-19 has previously been reported23,43. 
Further, hemopexin (gene product of HPX), a heme-binding and 
transporting protein, is downregulated. This could be due to its role 
in iron homeostasis, which is known to play a role in viral infec-
tions63–65. Proteome experiments using LC gradients as fast as 60 s 
are thus able to capture known and novel information in major 
infectious disease, including COVID-19, while allowing the mea-
surement of hundreds of thousands of samples.

Discussion
Bottom-up proteomics has become popular, in part because it 
substantially increases the number of proteins that can be stud-
ied in parallel in biological samples7,8,66,67. More recently, the pro-
teomic field has sought to increase throughput and data robustness. 
High-throughput proteomics benefits from recent developments 
in sample preparation, chromatography, data acquisition and data 
analysis. Automation and sample processing based on 96-well 
plates allow the preparation of hundreds of samples per day and 
reduce batch effects that limit large-scale and longitudinal experi-
ments23,67–72. Fast, efficient and robust chromatographic separations 
have been achieved by replacing traditional nanoflow LC73,74 with 
setups that use higher flow rates. This ranges from microflow LC 
systems (5–50 µl min–1)24,38,75 to LC devices with preformed gradi-
ents27,76. More recently we introduced proteome experiments that 
make use of high-flow LC (800 µl min–1). In 5-min chromato-
graphic gradients, these allow up to 180 proteome injections day–1 
on a single LC–MS instrument while increasing robustness, cost 
effectiveness and quantification precision in longitudinal proteome 
experiments23. The development of algorithms to deconvolute com-
plex spectra resulting from fast chromatographic measurements is 
ongoing, but several major steps have recently been achieved and 
have increased both proteomic depth and quantification precision, 
in conjunction with fast chromatographic methods22,77–79.

Missing so far have been MS acquisition modes specifically 
designed for the challenges of complex samples analyzed over a short 
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period of time. Here we demonstrate that the precise acquisition of 
proteomes in short gradients is facilitated by Scanning SWATH. This 
method, which requires a fast-scanning qTOF but no proprietary 
reagents, adds an additional scanning dimension to the raw data that 

increases depth and true-positive precursor identification. Scanning 
SWATH further shortens MS duty cycles and allows narrow precur-
sor isolation windows. Scanning SWATH hence brings the require-
ment for ‘deep’ proteomes and high throughput closer together.
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Fig. 4 | Scanning SWATH and 1-min gradients identify biomarkers that classify patients with COVID-19. a, Plasma samples were taken from 30 patients 
hospitalized with COVID-19 of varying severity, and from 15 healthy individuals. b, Plasma proteomes classified patients with COVID-19 according to 
severity. Centered and standardized quantities (z-scores) for 54 proteins that are significantly differentially expressed depending on COVID-19 severity 
are illustrated on a heatmap (Kendall’s Tau test for the Theil–Sen trend estimator, adjusted P < 0.01, Benjamini–Hochberg for multiple testing82). Clustering 
was performed row-wise but not column-wise. Labels indicate corresponding gene names. c, PCA separated patients according to disease severity. 
Proteins found significantly differentially expressed depending on severity were considered. d, The 1-minute sSWATH method gives quantities similar 
to conventional SWATH but with fivefold shorter gradients. Boxplots are shown comparing 5-min conventional SWATH23 with 1-minute sSWATH in 
quantification of COVID-19 severity biomarkers as a function of COVID-19 severity. Plots are labeled with gene names that encode the respective proteins: 
CFI (Complement factor I), GSN (Gelsolin) and ITIH4 (Inter-alpha-trypsin inhibitor heavy chain H4). Intensities were normalized to the mean value of each 
protein. n = 15 healthy patients, n = 5 patients with mild disease, n = 4 patients with severe disease, n = 8 critical patients. e, COVID-19 severity biomarkers 
that, to our knowledge, have not previously been associated with COVID-19 severity by proteomics. Plots are labeled with gene names that encode the 
respective proteins: A2M (Alpha-2-macroglobulin), C1QC (Complement C1q subcomponent subunit C), HPX (Hemopexin), IGHG2 (Immunoglobulin heavy 
constant gamma 2), IGKV4-1 (Immunoglobulin kappa variable 4–1), PON1 (Serum paraoxonase/arylesterase 1), PROS1 (Vitamin K-dependent protein S), 
SERPINA7 (Thyroxine-binding globulin), SERPINF2 (Alpha-2-antiplasmin), TMEM198 (Transmembrane protein 198) and TTR (Transthyretin). Protein 
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We have benchmarked the platform’s identification and quanti-
fication performance on a human cell line digest that is commer-
cially available (Promega) and thus facilitates comparability across 
laboratories. Further, we show the application of this technology 
in yeast antifungal drug screens, and in classification of patients 
with COVID-19 based on plasma samples. In human cell lysates 
we achieved quantification of 1,937 protein groups in conjunction 
with a chromatographic gradient as fast as 30 s, and show that, with 
gradients of 1–5 min, at least 70% more precursors are quantified 
compared to previous methods. Despite this high throughput, 
quantification precision is comparable to, if not higher than, the 
most recent achievements in human and yeast samples, even if sim-
ilar chromatographic setups, sample preparation and instruments 
are used17,23,38. Indeed, achieving a median CV of 6.4% in quantifica-
tion of protein groups in a cell lysate indicates that, despite the high 
throughput, the combination of high-flow chromatography and 
Scanning SWATH is among the most precise proteomic methods 
currently available.

The ideal balance between throughput and proteomic depth 
in a proteomic experiment is determined by the scientific ques-
tion asked. Scanning SWATH has benefits for both: it facilitates 
faster chromatographic gradients and better measurement preci-
sion in high-throughput applications, but it also improves pro-
teomic depth with longer gradients. With a 30-min gradient on 
our high-flow system, conventional stepped SWATH and Scanning 
SWATH identifird 5,958 and 6,564 protein groups, respectively 
(Supplementary Fig. 6). Scanning SWATH is most advantageous 
over existing methods in conjunction with fast chromatographic 
gradients and in the analysis of complex samples, wherein the 
assignment of precursor masses to MS/MS traces has major ben-
efits in improving true-positive precursor identification. Scanning 
SWATH combined with 5-min LC gradients measures protein 
group intensities across four orders of magnitude (Supplementary 
Fig. 7a), and intensity values are in agreement with those obtained 
using tenfold longer gradients (Supplementary Fig. 7b). This setup 
allows the measurement of several hundreds of proteomes per day 
on a single LC–MS instrument23.

The optimal injection amount is less a consequence of the 
Scanning SWATH method, but depends on the applied chromato-
graphic flow rate. The amount of sample injected for 5-min gradient 
methods was 5–10 µg, which is an accessible amount with conven-
tional digestion protocols17,23,80,81. For instance, the digestion of just 
5 µl of blood plasma would allow ten injections on the high-flow 
LC system.

We also note that, in contrast to conventional SWATH where 
different precursor isotopologs might fall into different windows, 
Scanning SWATH can preserve the isotopic patterns of fragments 
because there are no ‘quadrupole edges’ in Scanning SWATH raw 
data. This may have future applications. For instance, one could 
exploit this feature to improve stable isotope labeling by amino 
acids in cell culture (SILAC) experiments, where it has been noted 
before that in conventional SWATH experiments problems might 
occur when one of the precursor distributions (for example, light) 
is split between two windows but the other (for example, heavy) 
is not20.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41587-021-00860-4.

Received: 26 October 2020; Accepted: 18 February 2021;  
Published: xx xx xxxx

References
	1.	 Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome 

structure and function. Nature 537, 347–355 (2016).
	2.	 Cox, J. & Mann, M. Quantitative, high-resolution proteomics for data-driven 

systems biology. Annu. Rev. Biochem. 80, 273–299 (2011).
	3.	 Duarte, T. & Spencer, C. Personalized proteomics: the future of precision 

medicine. Proteomes 4, 29 (2016).
	4.	 Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. 

Drug Discov. 16, 19–34 (2017).
	5.	 Nilsson, T. et al. Mass spectrometry in high-throughput proteomics: ready for 

the big time. Nat. Methods 7, 681–685 (2010).
	6.	 Hebert, A. S. et al. Comprehensive single-shot proteomics with FAIMS on a 

hybrid Orbitrap mass spectrometer. Anal. Chem. 90, 9529–9537 (2018).
	7.	 Hebert, A. S. et al. The one hour yeast proteome. Mol. Cell. Proteomics 13, 

339–347 (2014).
	8.	 Muntel, J. et al. Surpassing 10000 identified and quantified proteins in a 

single run by optimizing current LC-MS instrumentation and data analysis 
strategy. Mol. Omics 15, 348–360 (2019).

	9.	 Meier, F. et al. diaPASEF: parallel accumulation–serial fragmentation 
combined with data-independent acquisition. Nat. Methods 17,  
1229–1236 (2020).

	10.	Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar 
acquisition method enables single-shot proteomics at a depth of 10,000 
proteins in 100 minutes. Nat. Methods 15, 440–448 (2018).

	11.	Bruderer, R. et al. Optimization of experimental parameters in 
data-independent mass spectrometry significantly increases depth and 
reproducibility of results. Mol. Cell. Proteomics 16, 2296–2309 (2017).

	12.	Shishkova, E., Hebert, A. S., Westphall, M. S. & Coon, J. J. Ultra-high 
pressure (>30,000 psi) packing of capillary columns enhancing depth of 
shotgun proteomic analyses. Anal. Chem. 90, 11503–11508 (2018).

	13.	Chen, R. & Snyder, M. Promise of personalized omics to precision medicine. 
Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 73–82 (2013).

	14.	Ebhardt, H. A., Root, A., Sander, C. & Aebersold, R. Applications of targeted 
proteomics in systems biology and translational medicine. Proteomics 15, 
3193–3208 (2015).

	15.	Costello, Z. & Martin, H. G. A machine learning approach to predict 
metabolic pathway dynamics from time-series multiomics data. NPJ Syst. 
Biol. Appl. 4, 19 (2018).

	16.	Ahadi, S. et al. Personal aging markers and ageotypes revealed by deep 
longitudinal profiling. Nat. Med. 26, 83–90 (2020).

	17.	Zelezniak, A. et al. Machine learning predicts the yeast metabolome from the 
quantitative proteome of kinase knockouts. Cell Syst. 7, 269–283 (2018).

	18.	Juvvadi, P. R. et al. Scanning quadrupole data-independent acquisition, Part 
B: application to the analysis of the calcineurin-interacting proteins during 
treatment of Aspergillus fumigatus with azole and echinocandin antifungal 
drugs. J. Proteome Res. 17, 780–793 (2018).

	19.	Moseley, M. A. et al. Scanning quadrupole data-independent acquisition,  
part A: qualitative and quantitative characterization. J. Proteome Res. 17, 
770–779 (2018).

	20.	Ludwig, C. et al. Data-independent acquisition-based SWATH-MS for 
quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 (2018).

	21.	Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by 
data independent acquisition: a new concept for consistent and accurate 
proteome analysis. Mol. Cell. Proteomics 11, O111.016717 (2012).

	22.	Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. 
DIA-NN: neural networks and interference correction enable deep proteome 
coverage in high throughput. Nat. Methods 17, 41–44 (2020).

	23.	Messner, C. B. et al. Ultra-high-throughput clinical proteomics reveals 
classifiers of COVID-19 infection. Cell Syst. 11, 11–24 (2020).

	24.	Bruderer, R. et al. Analysis of 1508 plasma samples by capillary-flow 
data-independent acquisition profiles proteomics of weight loss and 
maintenance. Mol. Cell. Proteomics 18, 1242–1254 (2019).

	25.	Hinshaw, J. V. How do your peaks measure up? LC GC Eur. 26,  
575–582 (2013).

	26.	Doellinger, J., Blumenscheit, C., Schneider, A. & Lasch, P. Isolation window 
optimization of data-independent acquisition using predicted libraries for 
deep and accurate proteome profiling. Anal. Chem. 92, 12185–12192 (2020).

	27.	Bekker-Jensen, D. B. et al. A compact quadrupole-Orbitrap mass 
spectrometer with FAIMS interface improves proteome coverage in short LC 
gradients. Mol. Cell. Proteomics 19, 716–729 (2020).

	28.	Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients 
for rapid, ultra-robust proteomics. Mol. Cell. Proteomics 17, 2284–2296 (2018).

	29.	Pais, P. et al. Membrane proteome-wide response to the antifungal drug 
clotrimazole incandida glabrata: role of the transcription factor CgPdr1 and 
the drug:H antiporters CgTpo1_1 and CgTpo1_2. Mol. Cell. Proteomics 15, 
57–72 (2016).

	30.	Ball, B., Bermas, A., Carruthers-Lay, D. & Geddes-McAlister, J. Mass 
spectrometry-based proteomics of fungal pathogenesis, host–fungal 
interactions, and antifungal development. J. Fungi 5, 52 (2019).

Nature Biotechnology | www.nature.com/naturebiotechnology

https://doi.org/10.1038/s41587-021-00860-4
https://doi.org/10.1038/s41587-021-00860-4
http://www.nature.com/naturebiotechnology


ArticlesNature Biotechnology

	31.	Berman, J. & Krysan, D. J. Drug resistance and tolerance in fungi. Nat. Rev. 
Microbiol. 18, 319–331 (2020).

	32.	Krysan, D. J. The unmet clinical need of novel antifungal drugs. Virulence 8, 
135–137 (2017).

	33.	Whaley, S. G. & Rogers, P. D. Azole resistance in Candida glabrata. Curr. 
Infect. Dis. Rep. 18, 41 (2016).

	34.	Stylianou, M., Kulesskiy, E. & Lopes, J. P. Antifungal application of 
nonantifungal drugs. Antimicrob. Agents Chemother. 58, 1055–1062 (2014).

	35.	Gonen, N. & Assaraf, Y. G. Antifolates in cancer therapy: structure, activity 
and mechanisms of drug resistance. Drug Resist. Updat. 15, 183–210 (2012).

	36.	Selevsek, N. et al. Reproducible and consistent quantification of the 
Saccharomyces cerevisiae proteome by SWATH-mass spectrometry. Mol. Cell. 
Proteomics 14, 739–749 (2015).

	37.	Alam, M. T. et al. The metabolic background is a global player in 
Saccharomyces gene expression epistasis. Nat. Microbiol. 1, 15030 (2016).

	38.	Vowinckel, J. et al. Cost-effective generation of precise label-free quantitative 
proteomes in high-throughput by microLC and data-independent acquisition. 
Sci. Rep. 8, 4346 (2018).

	39.	Zhao, R. & Goldman, I. D. Resistance to antifolates. Oncogene 22,  
7431–7457 (2003).

	40.	Mazu, T. K., Bricker, B. A., Flores-Rozas, H. & Ablordeppey, S. Y. The 
mechanistic targets of antifungal agents: an overview. Mini Rev. Med. Chem. 
16, 555–578 (2016).

	41.	Geyer, P. E., Holdt, L. M., Teupser, D. & Mann, M. Revisiting biomarker 
discovery by plasma proteomics. Mol. Syst. Biol. 13, 942 (2017).

	42.	Wright, I. & Van Eyk, J. E. A roadmap to successful clinical proteomics. Clin. 
Chem. 63, 245–247 (2017).

	43.	Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 
patient sera. Cell 182, 59–72 (2020).

	44.	Whetton, A. D., Preston, G. W., Abubeker, S. & Geifman, N. Proteomics and 
Informatics for understanding phases and identifying biomarkers in 
COVID-19 disease. J. Proteome Res. 19, 4219–4232 (2020).

	45.	Overmyer, K. A. et al. Large-scale multi-omic analysis of COVID-19 severity. 
Cell Syst. 12, 23–40 (2021).

	46.	Mahmud, I. & Garrett, T. J. Mass spectrometry techniques in emerging 
pathogens studies: COVID-19 perspectives. J. Am. Soc. Mass. Spectrom. 31, 
2013–2024 (2020).

	47.	Kurth, F. et al. Studying the pathophysiology of coronavirus disease 2019: a 
protocol for the Berlin prospective COVID-19 patient cohort 
(Pa-COVID-19). Infection 48, 619–626 (2020).

	48.	WHO R&D Blueprint novel Coronavirus COVID-19 Therapeutic Trial Synopsis 
(World Health Organization, 2020); https://www.who.int/blueprint/
priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_
Protocol_synopsis_Final_18022020.pdf

	49.	Assays for FDA Approved Protein Biomarkers (UVic Genome BC Proteomics 
Centre, 2020); http://mrmassaydb.proteincentre.com/fdaassay/

	50.	Zhang, B., Pirmoradian, M., Zubarev, R. & Käll, L. Covariation of peptide 
abundances accurately reflects protein concentration differences. Mol. Cell. 
Proteomics 16, 936–948 (2017).

	51.	Schwarz, E., Levin, Y., Wang, L., Leweke, F. M. & Bahn, S. Peptide correlation: 
a means to identify high quality quantitative information in large-scale 
proteomic studies. J. Sep. Sci. 30, 2190–2197 (2007).

	52.	Dermit, M. & Meyer, J. G. Peptide correlation analysis (PeCorA) reveals 
differential proteoform regulation. J. Proteome Res. https://doi.org/10.1021/
acs.jproteome.0c00602 (2020).

	53.	Fischer, A. M., Tapon-Bretaudiere, J., Bros, A. & Josso, F. Respective roles of 
antithrombin III and alpha 2 macroglobulin in thrombin inactivation. 
Thromb. Haemost. 45, 51–54 (1981).

	54.	Wu, G. et al. Structural studies of plasmin inhibition. Biochem. Soc. Trans. 47, 
541–557 (2019).

	55.	Gorini, F., Bianchi, F. & Iervasi, G. COVID-19 and thyroid: progress and 
prospects. Int. J. Environ. Res. Public Health 17, 6630 (2020).

	56.	Chen, M., Zhou, W. & Xu, W. Thyroid function analysis in 50 patients with 
COVID-19: a retrospective study. Thyroid 31, 8–11 (2021).

	57.	Gordon, S. M., Hofmann, S., Askew, D. S. & Davidson, W. S. High density 
lipoprotein: it’s not just about lipid transport anymore. Trends Endocrinol. 
Metab. 22, 9–15 (2011).

	58.	White, R., Giordano, S. & Datta, G. R. in Advances in Lipoprotein Research 
(ed. Isbir, T.) 53 (IntechOpen, 2017).

	59.	Fotakis, P. et al. Anti-inflammatory effects of HDL (high-density lipoprotein) 
in macrophages predominate over proinflammatory effects in atherosclerotic 
plaques. Arterioscler. Thromb. Vasc. Biol. 39, e253–e272 (2019).

	60.	Macpherson, M. E. et al. Impaired HDL function amplifies systemic 
inflammation in common variable immunodeficiency. Sci. Rep. 9,  
9427 (2019).

	61.	Farid, A. S. & Horii, Y. Modulation of paraoxonases during infectious 
diseases and its potential impact on atherosclerosis. Lipids Health Dis. 11,  
92 (2012).

	62.	Bacchetti, T. et al. Oxidative stress and psoriasis: the effect of antitumour 
necrosis factor-α inhibitor treatment. Br. J. Dermatol. 168, 984–989 (2013).

	63.	Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nat. Rev. 
Microbiol. 6, 541–552 (2008).

	64.	Roldan, E. Q., Biasiotto, G., Magro, P. & Zanella, I. The possible mechanisms 
of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against 
Sars-Cov-2 infection (COVID-19): a role for iron homeostasis? Pharmacol. 
Res. 158, 104904 (2020).

	65.	Weinberg, E. D. Iron and infection. Microbiol. Rev. 42, 45–66 (1978).
	66.	Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. 

Nature 509, 582–587 (2014).
	67.	Müller, J. B. et al. The proteome landscape of the kingdoms of life. Nature 

582, 592–596 (2020).
	68.	Leutert, M., Rodríguez-Mias, R. A., Fukuda, N. K. & Villén, J. R2-P2 

rapid-robotic phosphoproteomics enables multidimensional cell signaling 
studies. Mol. Syst. Biol. 15, e9021 (2019).

	69.	Müller, T. et al. Automated sample preparation with SP3 for low-input clinical 
proteomics. Mol. Syst. Biol. 16, e9111 (2020).

	70.	Macron, C., Núñez Galindo, A., Cominetti, O. & Dayon, L. A versatile 
workflow for cerebrospinal fluid proteomic analysis with mass spectrometry: 
a matter of choice between deep coverage and sample throughput. Methods 
Mol. Biol. 2044, 129–154 (2019).

	71.	Bennike, T. B. et al. A cost-effective high-throughput plasma and serum 
proteomics workflow enables mapping of the molecular impact of total 
pancreatectomy with islet autotransplantation. J. Proteome Res. 17,  
1983–1992 (2018).

	72.	Fu, Q. et al. Highly reproducible automated proteomics sample preparation 
workflow for quantitative mass spectrometry. J. Proteome Res. 17,  
420–428 (2018).

	73.	Wilson, S. R., Vehus, T., Berg, H. S. & Lundanes, E. Nano-LC in proteomics: 
recent advances and approaches. Bioanalysis 7, 1799–1815 (2015).

	74.	Gama, M. R., Collins, C. H. & Bottoli, C. B. G. Nano-liquid chromatography 
in pharmaceutical and biomedical research. J. Chromatogr. Sci. 51,  
694–703 (2013).

	75.	Bian, Y. et al. Robust, reproducible and quantitative analysis of thousands of 
proteomes by micro-flow LC-MS/MS. Nat. Commun. 11, 157 (2020).

	76.	Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients 
for rapid, ultra-robust proteomics. Mol. Cell. Proteomics 17, P2284–P2296 
(2018).

	77.	Ting, Y. S. et al. PECAN: library-free peptide detection for data- 
independent acquisition tandem mass spectrometry data. Nat. Methods 14, 
903–908 (2017).

	78.	Peckner, R. et al. Specter: linear deconvolution for targeted analysis of 
data-independent acquisition mass spectrometry proteomics. Nat. Methods 
15, 371–378 (2018).

	79.	Heaven, M. R. et al. microDIA (μDIA): data-independent acquisition for 
high-throughput proteomics and sensitive peptide mass spectrum 
identification. Anal. Chem. 90, 8905–8911 (2018).

	80.	Vowinckel, J. et al. The beauty of being (label)-free: sample preparation 
methods for SWATH-MS and next-generation targeted proteomics. F1000Res. 
2, 272 (2013).

	81.	Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample 
preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

	82.	Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021

Nature Biotechnology | www.nature.com/naturebiotechnology

https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf
http://mrmassaydb.proteincentre.com/fdaassay/
https://doi.org/10.1021/acs.jproteome.0c00602
https://doi.org/10.1021/acs.jproteome.0c00602
http://www.nature.com/naturebiotechnology


Articles Nature Biotechnology

Methods
Materials. Water (LC–MS grade, Optima, no. 10509404), acetonitrile (LC–MS 
grade, Optima, no. 10001334), methanol (LC–MS grade, Optima, no. A456-212) 
and formic acid (LC–MS grade, Thermo Scientific Pierce, no. 13454279) were 
purchased from Fisher Chemicals. Human cell lysate (MS Compatible Human 
Protein Extract, Digest, no. V6951) and trypsin (Sequence grade, no. V511X) were 
purchased from Promega. DL-dithiothreitol (BioUltra, no. 43815), iodoacetamide 
(BioUltra, no. I1149) ammonium bicarbonate (eluent additive for LC–MS, no. 
40867), yeast nitrogen base without amino acids (no. Y0626) and glass beads (acid 
washed, 425–600 µm, Sigma, no. G8772) were purchased from Sigma-Aldrich. Urea 
(puriss. P.a., reag. Ph. Eur., no. 33247H) and acetic acid (eluent additive for LC–
MS, no. 49199) were purchased from Honeywell Research Chemicals. Rosuvastatin 
calcium (no. S2169), fluvastatin sodium (no. S1909), pyrimethamine (no. S2006), 
pitavastatin calcium (no. S1759), pemetrexed disodium hydrate (no. S7785), 
pravastatin sodium (no. S3036), clotrimazole (no. S1606), miconazole nitrate (no. 
S1956), lovastatin (no. S2061), ketoconazole (no. S1353), atorvastatin (no. S2077), 
methotrexate disodium (no. S5097), simvastatin (no. S1792), uniconazole (no. 
S3660) and itraconazole (no. S2476) were purchased from Selleck Chemicals, and 
pralatrexate (no. A4350) was purchased from APExBIO. Control samples for the 
SARS-CoV-2 study were prepared from commercial human plasma (EDTA, Pooled 
Donor, Genetex, no. GTX73265).

Clinical samples from patients with COVID-19. Sampling was performed as 
part of the Pa-COVID-19 study, a prospective observational cohort study assessing 
the pathophysiology and clinical characteristics of patients with COVID-19 at 
Charité Universitätsmedizin Berlin47. All patients with SARS-CoV-2 infection as 
proven by positive PCR from respiratory specimens and willing to provide written 
informed consent were eligible for inclusion. Exclusion criteria were refusal to 
participate in the clinical study by the patient or their legal representative, or 
clinical conditions that do not allow for blood sampling. The study assessed 
epidemiological and demographic parameters, medical history, clinical course, 
morbidity and quality of life during the hospital stay of patients with COVID-19. 
Serial, high-quality biosampling consisting of various sample types with deep 
molecular, immunological and virological phenotyping was performed. Treatment 
and medical interventions followed the standard of care as recommended by 
current international and German guidelines for COVID-19. The severity of illness 
in the present study follows the WHO ordinal outcome scale48. The Pa-COVID-19 
study was carried out according to the Declaration of Helsinki and the principles 
of Good Clinical Practice (International Conference on Harmonization 
1996) where applicable, and was approved by the ethics committee of Charité 
Universitätsmedizin Berlin (no. EA2/066/20).

Sample preparation. The human cell lysate was obtained commercially (Promega) 
and was dissolved in 0.1% formic acid. Plasma samples were prepared as previously 
described23.

The yeast samples for drug response measurements were prepared and 
digested as follows: The auxotrophic S. cerevisiae strain BY4741 (∆his3, ∆leu2, 
∆ura3, ∆met15) was rendered prototrophic by genomic knock-in of the missing 
genes. This prototrophic, wild-type strain was grown on agar plates containing 
synthetic minimal medium for 3 days. Subsequently, colonies were inoculated in 
synthetic minimal liquid medium (25 ml) and incubated at 30 °C for 1 day. The 
yeast culture was transferred to 96-deep-well plates and drugs were added to 
achieve a working concentration of 10 μM (1 ml total volume per well). The yeast 
culture was incubated at 30 °C and was grown overnight to exponential phase. 
Cells were pelleted by centrifugation at 3,220 relative centrifugal force for 5 min, 
the supernatant was discarded and plates were stored at −80 °C until further 
processing.

200 μl 0.1 M ammonium bicarbonate in 7 M urea and glass beads (~100 mg 
per well) were added to the frozen pellet. Subsequently, the plates were sealed 
(Cap mats, Spex, no. 2201) and lysed in a bead beater for 5 min at 1,500 r.p.m. 
(Spex Geno/Grinder). After 1 min of centrifugation at 4,000 r.p.m., 20 μl of 
55-mM DL-dithiothreitol was added (final concentration 5 mM) with mixing, 
and the samples were incubated for 1 h at 30 °C. Subsequently, 20 μl of 120 mM 
iodoacetamide was added (final concentration 10 mM) and incubated for 30 min in 
the dark at room temperature. One milliliter of 100-mM ammonium bicarbonate 
was added, centrifuged for 3 min at 4,000 r.p.m. and 230 μl was transferred to 
prefilled trypsin plates (9 μl of 0.1 μg μl–1 trypsin). After incubation of the samples 
for 17 h at 37 °C, 24 μl of 10% formic acid was added. The digestion mixtures were 
cleaned using C18 96-well plates (96-Well MACROSpin C18, 50–450 μl, The Nest 
Group, no. SNS SS18VL). For solid-phase extraction, 1-min centrifugation steps at 
the described speeds (Eppendorf Centrifuge 5810 R) were applied to force liquids 
through the stationary phase. A liquid handler (Biomek NXP) was used to pipette 
the liquids onto the material to facilitate four 96-well plates per batch. The plates 
were conditioned with methanol (200 μl, centrifuged at 50g), washed twice with 
50% acetonitrile (ACN, 200 μl, centrifuged at 50g and flow-through discarded) and 
equilibrated three times with 3% ACN and 0.1% formic acid (200 μl, centrifuged at 
50/80 and 100g, respectively, and flow-through discarded). Then, 200 μl of digested 
samples was loaded (centrifuged at 100g) and washed three times with 3% ACN 
and 0.1% formic acid (200 μl, centrifuged at 100g). After the last washing step, 

the plates were centrifuged once more at 180g before elution of peptides in three 
steps, twice with 120 μl and once with 130 μl of 50% ACN (180 g), into a collection 
plate (1.1 ml, square well, V-bottom). The collected material was completely dried 
on a vacuum concentrator (Eppendorf Concentrator Plus) and redissolved in 
40 μl of 3% ACN and 0.1% formic acid before transfer to a 96-well plate (700 μl 
round, Waters, no. 186005837). QC samples for repeat injections were prepared by 
pooling 3 μl of each digested sample. All pipetting was done with a liquid handling 
robot (Biomek NXP automated liquid handler), shaking was performed with a 
thermomixer (Eppendorf Thermomixer C) after each step and, for incubation, a 
Memmert IPP55 incubator was used.

LC–MS. Liquid chromatography was performed on an Agilent Infinity II 
ultra-high-pressure system coupled to a Sciex TripleTOF 6600. Peptides were 
separated in reversed-phase mode using an InfinityLab Poroshell 120 EC-C18 
at a column temperature of 30 °C. The dimensions of the columns were 2.1 mm 
internal diameter, 30 mm length and 1.9-μm particle size for the yeast drug screen, 
and 2.1 mm internal diameter, 50 mm length and 1.9-μm particle size for all other 
measurements. For K562 benchmarks, a gradient was applied that ramps from 3 
to 36% buffer B in 5 min (buffer A: 1% acetonitrile and 0.1% formic acid; buffer 
B: acetonitrile and 0.1% formic acid) with a flow rate of 800 µl min–1. For washing 
the column, the flow rate was increased to 1 ml min–1 and the organic solvent 
was increased to 80% buffer B in 0.5 min, and was maintained for 0.2 min at this 
composition before reverting to 3% buffer B in 0.1 min. Subsequently the column 
was equilibrated for 2.1 min (Supplementary Table 10). An IonDrive Turbo V 
Source was used with ion source gas 1 (nebulizer gas), ion source gas 2 (heater gas) 
and curtain gas set to 50 psi, 40 psi and 25 psi, respectively. The source temperature 
was set to 450 °C and the ion spray voltage to 5,500 V.

For comparison of different gradient lengths (0.5, 1, 3 and 5 min), we applied 
linear gradients ramping from 3 to 36% buffer B (buffer A: 1% acetonitrile and 
0.1% formic acid; buffer B: acetonitrile and 0.1% formic acid) with a flow rate of 
800 µl min–1. For Scanning SWATH and conventional stepped SWATH the duty 
cycles were adjusted accordingly (Supplementary Tables 1 and 3). For conventional 
SWATH this was done by adjusting the number of variable windows to reach cycle 
times comparable to Scanning SWATH duty cycles (Supplementary Tables 2 and 
3). For this particular comparison, the accumulation times of MS1 and MS/MS 
scans were 10 and 25 ms, respectively.

The 1-min gradients used for the measurement of patient samples were slightly 
adjusted: 3 µg of the digested proteins was injected and we applied linear ramping 
from 3 to 15% buffer B (buffer A: 1% acetonitrile and 0.1% formic acid; buffer B: 
acetonitrile and 0.1% formic acid) in 0.1 min, followed by linear ramping from 15 to 
40% buffer B in 0.9 min (Supplementary Table 7 shows detailed gradient parameters).

For the yeast drug screen we reduced the column length to 3 cm (InfinityLab 
Poroshell 120 EC-C18, 2.1 mm internal diameter, 30 mm length and 1.9-μm 
particle size) and increased the flow rate during the column wash to 2.3 ml min–1, 
which reduced the method overhead time to 140 s (Supplementary Table 5 shows 
detailed gradient parameters).

Scanning SWATH settings, operation and calibration. The Scanning SWATH 
runs were acquired with a Scanning SWATH beta version. If not mentioned 
otherwise, the following settings were applied in the Scanning SWATH runs: the 
precursor isolation window was set to 10 m/z and a mass range of 400–900 m/z was 
covered in 0.5 s. These settings provided a compromise between identification and 
quantification performance. We optimized the window size on yeast (S. cerevisiae) 
whole-proteome tryptic digests and a 5-min, high-flow, water-to-acetonitrile 
gradient where we tested window sizes ranging from 3 to 20 m/z, covering a 
precursor range of 400–900 m/z. The best results in terms of identification and 
quantitative precision were achieved with a window size of 10 m/z (Supplementary 
Fig. 2a). Reducing the window size further would have resulted in even higher 
identification numbers due to reduced interference, but the resulting shorter 
effective accumulation times would have lowered quantitative precision. Raw 
data were binned in the quadrupole or precursor dimension into 2-m/z bins, 
providing a resolution in the Q1 dimension that allowed the effective use of Q1 
scores. The MS1 scan was omitted for the benchmarks, and data were acquired in 
high-sensitivity mode.

The instrument control software calculates an radio frequency/direct current 
(RF/DC) ramp that was applied to quadrupole filter 1. The ramp is calculated from 
the experimental start transmission mass, stop transmission mass, transmission 
width and cycle time. The calculation uses previously acquired calibrations to 
calculate ramps for mass DACS and resolution DACS. The quadrupole start mass is 
calculated as experiment start mass minus transmission width, and the quadrupole 
stop mass as experiment stop mass plus transmission width. This allows for correct 
precursor profiles of all fragments at the boundaries of the experimental mass 
range. Collision energy is calculated using the +2 Rolling Collision energy equation 
based on the center masses for each transmission window. This results in a small 
collision energy spread depending on the width of the transmission window 
relative to the range being scanned. In these experiments the effect is typical 
around a spread of 1 eV for a given precursor.

The instrument acquisition software organizes ion detection responses into 
calculated 2-m/z precursor isolation bins given the current TOF pusher pulse 
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number relative to the start of the scan applying the Scanning SWATH offset curve 
described above. The 2-m/z precursor isolation bins are organized in the data file 
as adjacent experiments, allowing for the extraction of precursor profiles for any 
given fragment in a given cycle by tracing fragment response across experiments, 
as well as normal chromatographic profiles across cycles.

The bins-to-sum (consolidation of data points in time-of-flight dimension) was 
set to 4 (4 × 25 picoseconds (ps) = 100 ps) for the K562 benchmark experiment, and 
to 8 (8 × 25 ps = 200 ps) for all other experiments.

Scanning SWATH calibration was obtained while processing each sample 
file from the sample data. An automated algorithm finds the maximum residual 
precursors for each transmission window across the entire sample. This results 
in several accurate mass TOF measurements paired with the centroid of the 
quadrupole mass traces per quadrupole transmission region, of which there 
are usually ten or more per 100 dalton (Da). For example, if the algorithm used 
the three best residual precursors across the LC for a given transmission region 
and the scan range was 500 Da with a transmission width of 10, there would be 
500/10 × 3 = 150 calibration point pairs consisting of quadrupole mass and TOF 
accurate mass. Since it is possible that an intense peak within the quadrupole 
transmission region is not in fact a residual precursor, a selection algorithm filters 
out points using an outlier rejection algorithm that considers local variance. 
Typically a point is evaluated relative to its neighbors in a 50–100-Da region. 
Once a multipoint calibration curve is obtained, the calibration is applied to the 
data by updating the begin and end mass region defined in the header from each 
experiment stored, such that the center is calculated from the calibration function 
while maintaining continuity of boundaries in adjacent experiments.

Matching precursors to MS/MS fragment traces in DIA–NN. The DIA–NN 
method takes full advantage of the fourth dimension in Scanning SWATH data. In 
DIA–NN, a set of scores is calculated for each precursor–spectrum match (PSM), 
to distinguish true signals from noise using linear classifiers and an ensemble of 
deep NNs. DIA–NN also selects the ‘best’ fragment ion per PSM, as the one with 
the clearest signal, with other fragment ions then being assessed by comparing 
their MS2 traces to those of the best fragment22. Scores specifically related to Q1 
profile assessment have now been added to DIA–NN algorithms. The Q1 profiles 
are extracted at the apex of the respective elution peak and the following scores are 
calculated. (1) Those that reflect the similarity of the Q1 profiles of the fragments 
and the nonfragmented precursor to the Q1 profile of the best fragment. One score 
is calculated as the sum of correlations between Q1 profiles of the fragments and 
the Q1 profile of the best fragment, as designated by DIA–NN during candidate 
elution peak identification22. The other score is the correlation of the Q1 profile of 
the nonfragmented precursor and the Q1 profile of the best fragment. (2) Scores 
that reflect how well Q1 profile shapes match the expected triangular shape. For 
each fragment, a score is calculated with values between 0 and 1, reflecting whether 
its Q1 profile increases monotonically to the left from the apex. These scores 
are then multiplied by the correlation between elution profiles of the fragments 
and the best fragment, and summed across all the fragments. A similar sum is 
calculated reflecting whether Q1 profiles are monotonically decreasing to the right 
from the apex. (3) The difference between the centroid of the Q1 profile of the 
best fragment and the library precursor mass is calculated. DIA–NN calculates the 
scores listed in (1) – (3) at three different scales by using the three, seven or 11 bins 
closest to the Q1 profile apex, respectively, yielding 3 × (2 + 2 + 1) = 15 scores in 
total (Supplementary Fig. 1 gives further details on the algorithm).

Only the monoisotopic fragment masses are used for Q1 profile assessment 
because the Q1 profiles of different fragment isotopologs are shifted relative to 
each other. We illustrate this for a doubly charged precursor (Supplementary 
Fig. 8). As one would expect, the Q1 profiles of the +1 13C and the +2 13C 
fragment isotopologs are shifted by ~0.5 and ~1 m/z to the monoisotopic mass, 
respectively. Depending on precursor mass and fragment mass, a small fraction 
of the monoisotopic fragments might also result from a +1 13C precursor isotope. 
This does slightly distort the Q1 profile of monoisotopic fragments but, as this 
distortion/shift is in the range of the mass accuracy of the quadrupole, it and its 
impact are negligible in practice.

Conventional DIA and SWATH runs (for benchmark). The conventional 5-min 
SWATH method is based on one previously published23. To render it comparable 
to the developed Scanning SWATH method, we applied the same 0.5-s duty 
cycle and the same precursor mass range of 400–900 m/z as in the developed 
Scanning SWATH method. Each duty cycle consists of one MS1 scan with 20-ms 
accumulation time, and 17 MS/MS scans with variable windows (Supplementary 
Table 11) and 25-ms accumulation time.

The DIA–FAIMS data, acquired on an Evosep One LC system coupled to 
an Orbitrap Exploris 480, were downloaded from ProteomeXchange (dataset 
PXD016662). Triplicate runs with 500-ng HeLa tryptic digests loaded on a column 
(the highest load in this dataset), a compensation value of −45 V for FAIMS, a 
resolving power of 15,000 and a cycle time of 1 s were considered because these 
runs provided the best identification numbers while maintaining quantitative 
accuracy27. DIA–FAIMS data were analyzed with a project-specific library acquired 
on the same setup (PXD016662; ‘5min-library.kit’). For the analysis in DIA–NN, 
the library was exported from Spectronaut (v.13.12.200217.43655 (Laika)) with the 

‘Export Spectral Library’ function and reannotated with the ‘Reannotate’ function 
in DIA–NN using the UniProt83 human canonical proteome (3AUP000005640). 
The DIA–FAIMS data were analyzed with Spectronaut (v.13.12.200217.43655 
(Laika)) and DIA–NN but, as the identification numbers were higher with DIA–
NN, we used these values for the benchmark.

Data processing and analysis. Raw data processing was carried out with DIA–NN 
v.1.7.12 and with default settings in ‘robust LC (high accuracy)’ mode. Protein 
quantities were obtained using the MaxLFQ algorithm84 as implemented in 
either DIA–NN (yeast drug screen) or the diann R package (https://github.com/
vdemichev/diann-rpackage) (all other samples).

The data processing and batch correction for patient measurements were done 
as described previously23. Briefly, the report was filtered at 0.01 precursor-level 
q-value and 0.05 protein-group-level q-value. Intrabatch correction was performed 
for each peptide precursor separately and based on the sample preparation 
controls, using linear regression on the injection number. Linear regression 
was applied only for at least ten data points. Testing of the relation between 
log2-transformed protein levels and WHO severity grade (as classified according to 
the WHO ordinal scale48) was performed using Kendall’s Tau test as implemented 
in the EnvStats R package85 (adjusted P < 0.01, Benjamini–Hochberg for multiple 
testing82). Proteins were considered for differential expression analysis only when 
identified in at least 90% of individuals/patients.

For the analysis of yeast drug screen data, proteins were considered only if 
detected in >50% of the samples, and samples were removed if they had <80% of 
the maximum identification number across samples. Only proteins identified with 
proteotypic (that is, specific) peptides and 0.01 protein q-value were considered. 
The differential expression analysis (drug-treated versus DMSO-treated) for the 
yeast drug screen was done on the log2-transformed protein quantities using a 
t-test (two-sided), considering proteins detected in at least three out of the four 
replicates. The Benjamini–Hochberg procedure82 was used for multiple testing 
correction. Drugs were considered for the subsequent analysis only if they had 
>20 differentially expressed proteins, and samples treated with folic acid and FIN56 
were excluded from the analysis because these do not belong to the three studied 
drug classes.

Coefficients of variation were calculated for each protein or precursor as its 
empirical standard deviation divided by its empirical mean, and are reported in 
percentages. CV values were calculated for proteins or precursors identified in 
at least two replicate measurements. PCA analysis was always performed only 
on ubiquitously identified proteins—imputation was not used. Heatmaps were 
generated with the ComplexHeatmap R package and default settings86. Pathway 
enrichment was performed with the clusterProfiler R package87 and wikipathways 
database88. Z-scores were calculated by dividing the (centered) protein quantities 
by their standard deviations. All plots were generated with R (v.3.6.3)89.

Spectral libraries. The libraries for the K562 benchmark experiments and for 
the yeast drug screen were generated from ‘gas-phase fractionation’ runs using 
Scanning SWATH and small precursor isolation windows. First, 5 µg of K562 cell 
lysate (Promega) or 5 µg of yeast digests was injected and run on a nanoAcquity 
ultra-performance LC (Waters) coupled to a SCIEX TripleTOF 6600 with a 
DuoSpray Turbo V source. Peptides were separated on a Waters HSS T3 column 
(150 mm × 300 µm, 1.8-µm particles) with a column temperature of 35 °C and 
a flow rate of 5 µl min–1. A 55-min linear gradient ramping from 3% ACN/0.1% 
formic acid to 40% ACN/0.1% formic acid was applied. The ion source gas 1 
(nebulizer gas), ion source gas 2 (heater gas) and curtain gas were set to 15 psi, 
20 psi and 25 psi, respectively. The source temperature was set to 75 °C and the 
ion spray voltage to 5,500 V. In total, 12 injections were run with the following 
m/z mass ranges: 400–450, 445–500, 495–550, 545–600, 595–650, 645–700, 
695–750, 745–800, 795–850, 845–900, 895–1,000 and 995–1,200. The precursor 
isolation window was set to m/z 1 except for the mass ranges m/z 895–1,000 
and m/z 995–1,200, where the precursor windows were set to m/z 2 and m/z 3, 
respectively. The cycle time was 3 s, consisting of high- and low-energy scans, and 
data were acquired in ‘high-resolution’ mode. The spectral libraries were generated 
using library-free analysis with DIA–NN directly from these Scanning SWATH 
acquisitions. For this DIA–NN analysis, MS2 and MS1 mass accuracies were set to 
25 and 20 ppm, respectively, and scan window size was set to 6.

For the analysis of COVID-19 plasma samples, a project-independent public 
spectral library24 was used as described previously23. The Human UniProt83 isoform 
sequence database (3AUP000005640) was used to annotate the library. The library 
was first automatically refined based on the dataset in question at 0.01 global 
q-value (using the ‘Generate spectral library’ option in DIA–NN). DIA–NN 
performs such refinement by finding the highest-scoring identification for each 
library precursor across all runs in the experiment, and then replacing the library 
data with the empirically observed spectrum and retention time.

Empirical FDR estimation with two-species library. Because FDR 
calculations are software- and acquisition-mode-specific, thus potentially 
affecting benchmarking results, we also compared Scanning SWATH data with 
conventional stepped SWATH using the two-species library approach, which 
estimates true-positive calls in an unbiased fashion on the basis of an empirically 
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measured FDR8,22. We augmented the human library with A. thaliana precursors, 
obtained from ProteomeXchange (dataset PXD012710, Arabidopsis proteome 
spectral library, ‘Arabidopsis_Library_TripleTOF5600_Spectronaut.xls’), as 
negative controls. Peptides that matched both the UniProt83 human canonical 
proteome (3AUP000005640) and the UniProt A. thaliana canonical proteome 
(3AUP000005648) were removed from the library. Spectra and retention times in 
the merged human/A. thaliana library were replaced with in silico predicted values 
whenever possible using the deep-learning-based prediction integrated in DIA–
NN. Empirical FDR was estimated as previously described22. In short, empirical 
FDR is the ratio of A. thaliana precursors and human precursors identified 
multiplied by the ratio of human precursors and A. thaliana precursors in the 
library (only precursors ranging 400–900 m/z were considered).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data generated for the benchmarks and the drug response screen in yeast have 
been deposited at the ProteomeXchange Consortium via the PRIDE90 partner 
repository, with the dataset identifier PXD023613; previously published data 
were also used for benchmarks (PXD016662) and two-species library generation 
(PXD012710).

Code availability
The algorithms are included in the open-source DIA–NN software suite (https://
github.com/vdemichev/diann).
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