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TOC Graphical Abstract 15 

 16 

Schematic representation of the SARS-CoV-2 spike protein receptor binding domain 17 

decorating a nanoparticle. The proteins are shown as a secondary structure coloured in 18 

pink, while one of them is represented as a red surface complexed with the ACE2 19 

receptor, which is shown in dark blue.  20 

 21 
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ABSTRACT 23 

Nanoparticles are small particles sized 1 to 100 nm, which have a large surface to 24 

volume ratio, allowing efficient adsorption of drugs, proteins and other chemical 25 

compounds. Consequently, functionalised nanoparticles have potential diagnostic and 26 

therapeutic applications. A variety of nanoparticles have been studied, including those 27 

constructed from inorganic materials, bio-polymers, and lipids. In this review, we focus 28 

on recent work targeting the SARS-CoV-2 virus that causes COVID-19. Understanding 29 

the interactions between coronavirus-specific proteins (such as the spike protein and its 30 

host cell receptor ACE2) with different nanoparticles paves the way to the development 31 

of new therapeutics and diagnostics that are urgently needed for the fight against 32 

COVID-19, and indeed for related future viral threats that may emerge.  33 

  34 

 35 

 36 

 37 
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1. INTRODUCTION 48 

 49 

Nanoparticles (NPs) are very small materials with a dimension between 1 and 100 nm. 50 

Their key physicochemical properties include a high surface area to volume ratio, 51 

solubility, surface topology/morphology and controllable aggregation, making them 52 

suitable for application in a variety of commercial and domestic sectors including 53 

electronics, catalysis, environment, imaging, energy, automotive and healthcare (1). 54 

There are various types of NPs, from inorganic materials such as gold, silica, graphene, 55 

and iron oxide, to organic materials where the main groups include liposomes, micelles, 56 

protein/peptides, and dendrimers. They are particularly useful in healthcare 57 

applications, mainly due to their high capacity for adsorbing biomolecules (2).  58 

Pharmaceutical nanotechnology is the development of therapeutic materials and 59 

devices at a nanometre scale, and there are several advantages to exploiting NPs in 60 

drug delivery. These include, but are not limited to: (i) improvement in the solubility of 61 

certain drugs; (ii) controlled, sustained release of drugs for a long-term effect; (iii) 62 

reduction of the side effects of some drugs; (iv) targeting of specific cells; (v) 63 

administration routes; and (vi) delivery of drugs in a secure manner, so that they are 64 

protected from degradation in the body and can effectively reach the target cells intact 65 

(3). NPs can display efficient adsorption of proteins, drugs molecules, and a variety of 66 

other chemical compounds. Therefore, NPs can carry a varied cargo load (4), making 67 

them efficient not only for drug delivery, but also diagnostic and therapeutic 68 

applications.  69 

In this review, we explore how NPs have been used to develop approaches to tackling 70 

COVID-19, focusing on the interactions between NPs and adsorption of molecules such 71 

as proteins and drugs. We start with a brief overview of NP properties and their potential 72 

anti-viral applications. We then review the SARS coronavirus (SARS-CoV-2) that 73 

causes COVID-19 and its proteins that are the targets for new technologies, before 74 

turning to the various types of NPs that can be used as the basis for these technologies. 75 

Jo
urn

al 
Pre-

pro
of



5 

 

Alternative approaches to treating COVID-19, for example by repurposing drugs that 76 

were previously successful against other viruses, is discussed, followed by an overview 77 

of developments in diagnostics. We finish the review with a summary and forward look 78 

as to how understanding the interactions between the different molecules and NPs 79 

could be used to rationally design new technologies to help tackle this pandemic and 80 

future coronavirus disease. 81 

2. Nanoparticle-biomolecule interactions and applications 82 

2.1. Physicochemical Properties 83 

Selective and targeted delivery of modified NPs could enable specific detection and 84 

even destruction of viruses. To ensure this happens efficiently, it is important that the 85 

NPs are correctly optimised to ensure maximum efficacy and correct bioavailability, as 86 

well as negating any toxic effects, particularly those related to the formation of reactive 87 

oxygen species (ROS) (5). Furthermore, the rate of cellular uptake of the NPs depends 88 

on their physicochemical properties and the membrane characteristics at the site of 89 

interaction (6).  90 

The key properties of NPs (Figure 1) make them ideal for a variety of effective systems. 91 

They can be porous or even hollow, and are often amenable to surface chemistry 92 

modification. Proteins adsorbed on NPs normally form a dynamic corona, and protein 93 

conformational changes associated with the adsorption influence the overall in vivo 94 

bioreactivity (7). The nature of NPs can influence the folding and unfolding properties of 95 

the protein, and by tuning the properties of the NPs, it can open new prospects in 96 

producing biologically active molecules. Thus, understanding the properties of the 97 

corona is essential (8). The interactions between NPs and a particular protein can utilise 98 

a noncovalent route, with the solvent having a critical role to facilitate the interaction (8). 99 

Consequently, it is vital to utilise a solvent in vitro that mediates the same interactions in 100 

vivo (9).  101 

 102 

 103 
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Figure 1: A schematic diagram showing drug loading options in NP targeted drug 104 

delivery. 105 

The biodegradation of NPs also requires attention, as uniform bio-distribution kinetics 106 

and sustained drug release are key elements in the drug design process. Absorption, 107 

distribution, metabolism and excretion are pharmacokinetic features linking directly to 108 

the nature and profile of these systems, and it is therefore crucial to account for all 109 

these factors when designing a nanoparticulate therapy (10).   110 

2.2. Anti-viral applications 111 

Several inorganic NPs have been explored previously for their applications in drug 112 

delivery for viral infections. Gold NPs have a particular advantage in nano-vaccines as 113 

they can function as adjuvants (compounds to boost an immune response) in 114 

immunisation. For example, their use was investigated against influenza A virus, to 115 

combat mutations which made the virus resistant to existing anti-viral drugs (11). Silica 116 

NPs were investigated as a vaccine platform against human immunodeficiency virus 117 
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(HIV) (12), and Quantum dots, which have excellent sensing properties, can be used 118 

for anti-viral therapeutics as well as for detection and diagnosis (13).   119 

Silver NPs have also been investigated for their anti-viral activity (14) (15). Anti-viral 120 

activity against Peste des petits ruminants virus depends on the NP interaction with 121 

virion surface, and this interaction impairs viral entry into target cells (14). These NPs 122 

may lead to better anti-viral activity when used in conjunction with bronchodilators in the 123 

lungs, and this technology could have promising applications in treating COVID-19 124 

patients (15).  125 

Several organic NPs have also been used in pharmaceutical applications, e.g. 126 

Cyclodextrin NPs, which are cyclic oligosaccharides with a hydrophilic outer surface 127 

and a lipophilic central cavity. Garrido et al. (16) suggested the use of cyclodextrins 128 

against COVID-19. These NPs maybe particularly helpful due to their physical 129 

properties with polar hydroxy groups oriented specifically, allowing increased solubility 130 

and decreased toxicity of the associated drug. Furthermore, they are highly 131 

biocompatible, meaning they do not generate an immune response. Lipid NPs (LNPs), 132 

often used in novel pharmaceutical formulations, are readily integrated in medicines. 133 

This is due to their high biocompatibility, low toxicity, ability to cross membranes and 134 

seamless integration with hydrophobic/hydrophilic drugs.   135 

NPs can be readily made with a similar size to the virus, and may interact with proteins 136 

associated with the SARS-CoV-2 virus, disrupting viral replication and disease 137 

prognosis (17). The use of NPs against SARS-CoV-2 has tremendous potential due to 138 

their specific properties including: i) precise targeting of cellular entry pathways; ii) 139 

targeted binding to the viral genome; iii) modulation of viral transcription; iv) triggering 140 

the production of ROS; and v) activation of signalling pathways at a mitochondrial level 141 

(18).   142 

Tabish (18) explored the multivalent nature of nanomedicines and how this may be 143 

particularly useful in the fight against COVID-19. Multivalent NPs have several 144 

advantages over standard monovalent drugs, including a high density of binding sites 145 
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on each NP, the ability to form multivalent ligand receptor pairs, multi-fold RNA 146 

hybridisation, and the transformation of inactive NPs into multivalent conjugates (18). 147 

Multivalency may work against SARS-CoV-2 effectively with cell entry through receptor-148 

mediated endocytosis (19). Hassanzadeh (20) also suggested the use of multivalent 149 

NPs against COVID-19. Given the similarities in shape of synthetic NPs and SARS-150 

CoV-2, they could be particularly useful for investigation with drug repurposing, 151 

enhancing properties of existing drugs and compounds against COVID-19. However, 152 

caution is required, since SARS-CoV-2 may induce a hyperinflammatory response, 153 

driven by a dysregulated macrophage response (21). Therefore, it is important to look at 154 

the properties of any material to make sure it does not interact negatively in vivo.   155 

3. SARS-CoV-2 156 

3.1. Description of the virus and its function 157 

SARS-CoV-2 is spread predominantly from person to person, by droplets generated 158 

when an infected person coughs, sneezes or talks. Infection may also occur by touching 159 

contaminated surfaces and then the face without first washing hands, and the faecal-160 

oral route may also be a source of transmission for the virus (22). The base symptoms 161 

include fever, cough, shortness of breath, fatigue, and loss of taste and/or smell. 162 

Depending on other factors such as infection level, age and ethnicity, the symptoms 163 

may be extended to include headache, haemoptysis, or diarrhoea. This highlights the 164 

severity of the virus, which can be fatal (23). Therefore, the development of a new 165 

treatment for this virus is a priority for researchers globally.  166 

Analysis of the genomic sequence of SARS-CoV-2 (24) shows there are at least six 167 

open reading frames (ORFs), which are segments of an RNA molecule that can be 168 

translated, allowing production of four main structural proteins: a Spike protein (S), 169 

Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N). There is 170 

also the viral haemagglutinin-acetylesterase (HE) glycoprotein receptor, as illustrated in 171 

Figure 2.  The M and E proteins are involved in virus morphogenesis and assembly 172 
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(25). The N protein guards the RNA inside the M and E proteins, and the S protein is on 173 

the outside and the focal point of infection. 174 

Figure 2: Diagram showing the structural proteins of the SARS-CoV-2 virus. 175 

3.2. Potential Biomolecular Targets 176 

The S protein is an important therapeutic and diagnostic target, as it is responsible for 177 

entry into and infiltration of the host cell. It is a homotrimer with two domains, S1 and S2 178 

on each monomer. Analysis of these monomers shows they are highly glycosylated 179 

(26), protecting the protein from the biological environment and allowing evasion from 180 

the host immune system. The S1 subunit contains the receptor binding domain (RBD) 181 

that binds to the peptidase domain of angiotensin-converting enzyme 2 (ACE2) (Figure 182 

3), a cellular receptor expressed on several cell types in human tissues, and this allows 183 

entry of SARS-CoV-2 into the cell (27).  184 

Upon cell entry, two ORFs, 1a and 1b, translate to two polypeptides (1a and 1ab) and 185 

this further encodes two proteases, the main protease (Mpro), also known as the 186 

chymotrypsin-like cysteine protease (3CLpro), and papain-like protease (PLpro) (28). 187 
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These represent significant drug targets, since inhibition of these will stop production of 188 

proteins that are critical to viral transcription and replication (29-31).  189 

The S1 subunit allows entry of the virus into the host cell, and inhibition of this will block 190 

the protein from interacting with the ACE2 receptor (32). For example, immunoadhesins 191 

have been investigated for their interactions with the S protein through MD simulations 192 

(33). Another potential target for therapeutics development is transmembrane protease 193 

serine 2 (TMPRSS2) found on host cells (34). It cleaves (primes) the S protein into its 194 

subunits to enable cell entry, and inhibition of this process may prevent the initial entry 195 

of the virus.      196 

High density lipoproteins (HDLs) are particles consisting of several proteins which 197 

transport all fat molecules around the body. HDL-scavenger receptor B type 1 (SR-B1) 198 

is a cell surface HDL receptor, which has been shown to facilitate ACE2-dependent 199 

entry of SARS-CoV-2, and further enhance uptake and increase rate of virus entry (35). 200 

Wei et al. (35) suggested that blockage of the cholesterol binding site on the S1 subunit 201 

or treatment with SR-B1 antagonists inhibits HDL enhanced SARS-CoV-2 infection. 202 

Therefore, SR-B1 could also potentially be a target for therapeutic designs. Patel et al. 203 

have also suggested HE as a target (36) to inhibit the virus invasion mechanism. 204 

The residues responsible for the interaction between the S protein and the ACE2 205 

receptor have been investigated by Veeramachaneni et al. (37). This information is 206 

important for designing any medicine, since the residues required for interaction with the 207 

target should remain free to bind to the therapeutic molecule, to allow effective 208 

inhibition. Their analysis has identified the key residues that interact with the ACE2 209 

receptor (see Figure 3).  210 
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 211 

Figure 3. Interaction between the ACE2 receptor (Blue) and the S protein RBD (Red). 212 

Inset shows key interacting residues between the ACE2 receptor. The crystal structure 213 

was obtained from the Protein Databank (PDB entry 6M0J (38)). The crystal structure 214 

was viewed and analysed using VMD (Visual Molecular Dynamics 1.9.1). 215 

4. Nanoparticle-biomolecular systems for COVID-19 216 

4.1. Inorganic nanoparticles 217 

The potential of NPs for the treatment of COVID-19 is promising due to their various 218 

properties. Iron oxide NPs, which have previously been investigated for their anti-viral 219 

activity, were simulated for their interaction with the RBD of the S1 subunit (39). It was 220 

found that a model Fe3O4 NP forms a stable complex with the protein, interacting 221 

through several hydrophobic interactions primarily with residues Leu455, Ser494 and 222 

Phe497. Therefore, these NPs, which are currently an approved treatment for anaemia, 223 

could be repurposed to treat COVID-19 (39).  224 

Carbon nanotubes (CNTs) have a large load capacity and good bioavailability, 225 

allowing for easy interaction with biological barriers in the body (40). The electrical and 226 

thermal properties of these materials could be used to develop a CNT functionalised 227 

complex, raising the local cellular temperature using a photodynamic thermal effect and 228 
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treating COVID-19 by inhibiting viral replication (41). The binding of the S protein to 229 

biomedically relevant surfaces has been examined computationally, and it was found 230 

that the RBD of the S protein interacts with negatively charged silica surfaces so that 231 

the epitope (part of the antigen molecule, RBD in this instance, to which an antibody 232 

binds) is exposed. A model gold surface has also shown good interaction with the 233 

protein (42). The use of charged or hydrophobic surfaces in developing therapies may 234 

therefore be significant as they show good adsorption (42).  235 

4.2. Organic nanoparticles 236 

As researchers globally are working to develop an immediate treatment for this new 237 

virus, the development of effective vaccines is also vital. One approach for mRNA 238 

vaccines comprises mRNA (encoding a specific protein) encapsulated in organic NPs, 239 

most commonly LNPs. Once LNP conjugates reach the host cell, the cell machinery 240 

follows the encapsulated mRNA instructions and produces the target protein, which is 241 

then displayed on the cell surface and can eventually trigger an immune response (43).  242 

The obvious target for the SARS-CoV-2 virus is the S protein, and an example of  243 

mRNA-based vaccine has been developed by BioNTech in collaboration with Pfizer. It 244 

has been approved by the United States Food and Drug Administration (FDA), the 245 

United Kingdom Medicines and Healthcare products Regulatory Agency (MHRA) and 246 

the European Medicines Agency (EMA), demonstrating an estimated efficacy of 95% 247 

(44) (45). Another mRNA-based vaccine was developed by Moderna, a US based 248 

biotech firm (46). Phase 3 clinical trial demonstrated that the vaccine has 94.1% efficacy 249 

in preventing COVID-19 (47). At the time of writing, this has been approved by the FDA 250 

for emergency use, and by MHRA and EMA.  251 

Self-amplifying RNA (saRNA), is a newer type of RNA vaccine which contains a viral 252 

replication enzyme (replicase), allowing it to amplify (48). The saRNA enters the host 253 

cell, translates the replicase, making a negative copy of the mRNA. The mRNA strand is 254 

used by the replicase to synthesise more saRNA, while simultaneously binding to a sub-255 

genomic promoter in the negative strand. This synthesises sub-genomic mRNA at a 10-256 

Jo
urn

al 
Pre-

pro
of



13 

 

fold greater concentration than genomic RNA, encoding the viral antigen more 257 

effectively and making a more efficient vaccine.  258 

McKay et al. investigated the vaccine potential of a saRNA molecule encoding the S 259 

protein, encapsulated within LNPs (49). A high concentration of SARS-CoV-2 specific 260 

antibody titres in mice was observed. When compared to the results from a natural 261 

immune response in recovered COVID-19 human patients, the vaccine resulted in much 262 

higher antibody titres, which were able to neutralise both a pseudo and wild type SARS-263 

CoV-2 virus. Furthermore, there was no observation of antibody-dependent 264 

enhancement (ADE) (49), which could result in enhanced respiratory disease and acute 265 

lung injury after respiratory virus infection. This is a common concern when developing 266 

antibody dependent vaccines, which could reverse amplify the infection (50).    267 

4.3. Administration routes 268 

Nanoparticles can open up a variety of administration routes beyond injection. For 269 

example, liposomes can be designed for ingestion, protecting the drug from the acidic 270 

environment of the digestive tract to release it into the tissue of the gut wall (51). In 271 

addition, liposomes have been used to protect sensitive materials like mRNA encoding 272 

SARS-CoV-2 spike protein, and this technology was adapted in SARS-CoV-2 vaccines 273 

developed by Pfizer and Moderna (44-47).  274 

For COVID-19, nasal administration would seem to be an attractive proposition. Since 275 

the virus primarily enters by breathing in particles, providing protection at the site of 276 

infection would appear beneficial. One existing flu vaccine, FluMist 277 

(https://www.flumistquadrivalent.com/) is sprayed into the patient’s nose where the 278 

weakened virus induces mucosal immunity represented by IgA antibodies, as well as 279 

systemic immunity of the IgG antibodies (52). This means that the immunised patient 280 

has two layers of defence against the virus, and reduced likelihood of being able to 281 

carry and transmit the virus. Nanoparticulate systems could similarly be administered 282 

through inhalation or nasal spray, providing an attractive administration route with 283 
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potential for greater protection for the patient, and more feasible storage conditions for 284 

healthcare providers.   285 

5. Potential new approaches 286 

5.1. Repurposing existing drugs 287 

Drug repurposing represents the concept of implementing an investigational drug for 288 

new uses beyond the original intention (53). Repurposing drugs for COVID-19 is an 289 

attractive approach given the need to explore all the available options to immediately 290 

reduce mortality rates. This approach allows avoidance of the financial, resource, and 291 

time implications associated with the novel drug discovery process, and researchers 292 

and pharmaceutical companies are increasingly relying on drug repurposing.  293 

Repurposing brings several other advantages, since it can lower the risk of failure as 294 

the drug has already been evaluated for its toxicity profile. In addition, it can save 295 

additional time as many of the drugs have already undergone preclinical and safety 296 

assessments. Moreover, the drugs have already undergone trials, so they may be able 297 

to accelerate phases 1 and 2, and progress to large-scale phase 3 trials. Furthermore, 298 

drug repurposing experiments do not always need major laboratory work, and any 299 

required work can often be performed in silico. The identification of suitable effective 300 

drugs is an exciting prospect, and further combination with NPs may enhance their 301 

biocompatibility and physicochemical properties. Despite the aforementioned 302 

advantages, repurposing a drug must be approached with caution as some drugs can 303 

cause poly-pharmacological side effects, and intellectual property issues may arise (53). 304 

As already discussed, the ACE2 receptor, expressed on many cell types, is key to the 305 

initial cellular entry by SARS-CoV-2. Therefore, Khelfaoui (54) used molecular docking 306 

combined with MD simulations to study drugs similar in structure to chloroquine and 307 

hydroxychloroquine, which are both approved medicines, aiming to block the ACE2 308 

receptor. The studies were performed using two structures, the ACE2 receptor and 309 

SARS-CoV-2 bound to the ACE2 receptor, and the results showed that ramipril, 310 

lisinopril, and delapril, ACE2 receptor inhibitors currently used to treat hypertension, 311 
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could bind with the ACE2 receptor better than hydroxychloroquine. Drugs that have 312 

been investigated for repurposing against key proteins associated with the SARS-CoV-2 313 

virus are summarised in Table 1. These could then be used in isolation or conjugated to 314 

NPs to enhance their properties.  315 

Table 1: A summary of FDA approved and other anti-viral drugs that have been 316 

investigated for repurposing against key proteins involved in the replication of SARS-317 

CoV-2. 318 

Drug(s) Existing Use SARS-CoV-2 

target protein 

Binding residues 

Paritaprevir/Simeprevir 

(55) 

Hepatitis C virus Mpro His41/Cys145 

Remdesivir (56) Ebola Virus  RdRp Ser759, Asp760, 

Asp761 

Hydroxychloroquine (57) 

(58) 

Malaria, 

rheumatoid 

arthritis, and lupus 

Mpro His41/Cys145 

Pyronaridine (59) Anti-malarial 

agent 

Mpro His41/Cys145 

Epirubicin, Saquinavir 

(60) (61) (62) 

Chemotherapy, 

HIV/AIDS  

Mpro His41/Cys145 

Mitoxantrone, 

Leucovorin, Birinapant, 

Dynasore (63) 

Chemotherapy, 

rectal cancer, 

breast cancer, 

perturbs 

endocytosis 

Mpro His41/Cys145, 

Glu166 
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Noscapine ligand 23B 

(64) 

Chemotherapeutic 

Agent 

Mpro Arg40, Tyr54, 

Cys85, Phe181, 

Arg188, Glu55, 

Met82 and Asn84 

Lopinavir-Ritonavir, 

Tipranavir, Raltegravir 

(65) (66) 

HIV/AIDS, HIV, 

HIV/AIDS 

Mpro His41/Cys145 

TMB607, TMC310911 

(67) 

HIV-1 protease 

inhibitor, 

HIV/AIDS 

Mpro His41/Cys145 

Atazanavir, Darunavir 

(62) 

HIV/AIDS Mpro His41/Cys145 

 319 

5.2. Application of natural compounds 320 

Natural compounds have long been studied for their application in treating disease, and 321 

have a wide range of diversity in their chemical structures. Their use with drug delivery 322 

systems and other technologies might accelerate their exploitation (68). Han (69) 323 

studied peptide inhibitors against the SARS-CoV-2 RBD. The inhibitors were based on 324 

the protease domain of ACE2 receptor, and it was shown through MD simulation that 325 

the peptides are stable when bound to the RBD, blocking the virus from attaching to the 326 

actual ACE2 receptor expressed in human cells, thereby having the potential to stop 327 

infection. Of the 4 inhibitors studied, the work identified high stability with 3, which 328 

retained their secondary structures and therefore their fits to the RBD.  329 

In a separate study, Chen et al. (70) looked at the prospect of using polysaccharides 330 

in developing treatments for COVID-19. These compounds have several advantages 331 

including low toxicity and good biocompatibility, and they are potential targets for the 332 

development of anti-viral treatments. This is because they may interfere with the viral 333 
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pathways by blocking the positive charge on the host cell surface to prevent viral entry 334 

(71). For example, chitosan NPs were investigated against the hepatitis C virus (72). 335 

The applications of natural compounds against COVID-19 are summarised in Table 2. 336 

The versatility of natural compounds may allow for easier interaction with NPs 337 

compared to pre-existing drugs.   338 

Table 2: A summary of natural compounds that have been studied against COVID-19. 339 

Natural Compound(s) Origin Target Key residues 

Oridonin (36) Compound 

from the 

Naturally 

Occurring 

Plant-Based 

Anti-cancer 

Compound-

Activity-Target 

(NPACT) 

Database 

HE The114, Thr159, 

Leu161, Ala176, 

Arg177, Tyr184, 

Phe211, Leu212, 

Ser213, Asn214, 

Leu267 

Epigallocatechin gallate, 

epicatechin-gallate, 

gallocatechin-3-gallate 

(73) 

Green tea 

polyphenols 

Mpro His41/Cys145 

Peonidin 3-O-glucoside, 

kaempferol 3-Ob–

rutinoside, 4-(3,4-

dihydroxyphenyl)-7-

methoxy-5-[(6-O-b-D-

xylopyranosyl-b-D-

glucopyranosyl)oxy]-2H-

Plant-based 

compounds 

from the 

Sigma-Aldrich 

chemical library 

Mpro His41/Cys145, 

Leu141, Asn142, 

Ser144, His163, 

Glu166 
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1-benzopyran-2-one, 

quercetin-3-D-xyloside, 

and quercetin 3-O-a-L-

arabinopyranoside (74) 

procyanidin-a (75) Flavonoid from 

plants 

ACE2, Mpro Ser44, Ser47, 

Asp350, Asp382, 

Tyr385, Arg393, 

Asn394, His401, 

Phe40, Phe390 

Melatonin (76) Natural 

hormone 

Mpro His41/Cys145 

C1 and C2 (77) Natural 

compounds 

from Curcuma 

Ionga L. 

Mpro His41/Cys145, 

Thr190, Thr25, 

Glu166, Thr45, 

Cys44, Ser46, 

Cys145, Pro168, 

Met165 

Hesperidin, sesamin 

(78) 

Natural herbal 

medicines 

Mpro His41/Cys145 

Theaflavin di-gallate  

(66) (62) 

Plant-derived 

natural drug 

Mpro His41/cys145 

Azurin, peptides p18 

and p28 (79) 

Blue copper 

bacterial 

protein 

produced by 

Pseudomonas 

aeruginosa 

S protein, Mpro and 

PLpro. 

N-terminal region 
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Human Intestinal 

Defensin 5 (80) 

Innate defence 

mechanism 

ACE2 Asp30 and Lys31 

NPRL-334 (81) Natural 

compound from 

the Natural 

Products 

Research 

Laboratories 

(NPRL) library 

Mpro His41/Cys145, 

His3304, Met3428, 

Pro3431, Gln3452, 

Glu3429 

TCM 57025, TCM 3495, 

TCM 20111, TCM 31007 

and TCM 5376 (30)  

Traditional 

Chinese 

medicine 

database 

N7-MTase Asn306, Arg310, 

Trp385, Asn388 

Luteolin (82) Flavonoid in 

Honeysuckle 

Mpro His41/Cys145, 

Gln189, Leu4, 

Asn142, Thr26. 

Met49, Val3 

 340 

5.3. Promising synthetic chemicals  341 

The drug repurposing approach can also be used to analyse synthetic chemical 342 

compounds that might prove to be effective anti-virals. This can be achieved by 343 

screening a database of small molecules against viral drug targets to identify molecules 344 

with possible anti-viral activity, or by developing chemical compounds in-house. 345 

Promising synthetic chemicals which have been investigated against COVID-19 are 346 

summarised in Table 3. 347 

 348 

Table 3: Summary of promising synthetic chemical compounds. 349 
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Chemical(s) Origin Target Key residues 

IH-009 and IH-027 

(83)  

Inhouse chemicals PLpro Pro247, Pro248 

Neohesperidin (84)  Selleckchem 

Database 

TMPRSS2 Arg55, Gly97, 

Asn51 

Ligand F2679-0163, 

Ligand F6355-0442, 

Ligand 8250 (85)   

Life Chemicals 

Library, Asinex 

database 

Mpro Leu141, Glu166, 

Thr190, Gln192, 

Gly143, Ser144, 

His41/Cys145  

ZINC20601870, 

ZINC00793735 (86) 

ZINC database Mpro His41/Cys145, 

Hie163, Hie41, 

Met49, Hie164, 

Glu166, Met165, 

Thr26, Gly143, 

Asn142, Leu141, 

Gln189 

α-ketoamide 13b 

ligand (87) (88) (89) 

Inhouse molecule Mpro His41/Cys145 

ZINC64606047, 

ZINC05296775 

ZINC Database TMPRSS2 His296, Asp345, 

Ser441, Asp435, 

Ser460, Gly462 

 350 

6.  Other Nanoscale Material Applications 351 

Nano biosensor technology has a potential to enhance testing, giving rapid and 352 

accurate detection of viruses. This technology works on the premise that the 353 

biomolecule of interest selectively binds to the target conjugated to a detector, 354 

producing a sensing signal that can be digitally interpreted (90). Though limited studies 355 

have been reported so far, this technology has the potential to offer a better and 356 
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alternative approach to existing polymerase chain reaction (PCR) testing that is used to 357 

diagnose COVID-19. 358 

A dual-functional plasmonic photothermal biosensor, combining localised surface 359 

plasmon resonance (LSPR) with a plasmonic photothermal (PPT) effect, can detect viral 360 

proteins. Qiu et al. (91) integrated the technologies on a two dimensional gold nano-361 

island chip, finding that the sensitivity and reliability of the sensor was enhanced when 362 

the angle of incidence of the illuminating light was changed. This is because the 363 

plasmonic resonances of the two technologies are excited at different wavelengths, 364 

giving a real-time and label-free detection of viral sequences from SARS-CoV-2 365 

including: RdRp, ORF1ab, and E genes. Furthermore, the in situ PPT enhancement on 366 

the chip improved the specificity of genomic detection, meaning similar sequences of 367 

RdRp genes from SARS-CoV (Previous pandemic between 2002-2004) and SARS-368 

CoV-2 can be accurately distinguished. This dual-functional LSPR sensor represents a 369 

simple and rapid diagnostic tool, which could improve the accuracy of SARS-CoV-2 370 

testing in clinical diagnosis settings. In addition, it can help or even replace existing 371 

PCR tests, which often need several days to obtain results, may return false results, 372 

and need professional staff to perform the assay and interpret the results (92). 373 

Lanthanides, a series of rare earth elements, possess unique physical and electronic 374 

features, giving rise to properties such as long luminescence lifetimes and other optical 375 

characteristics. Chen et al. (93) investigated lanthanide-doped NPs with a lateral flow 376 

immunoassay (LFIA) as a biosensor, to detect anti-SARS-CoV-2 IgG antibodies in 377 

human sera. The LFIA also included mouse anti-human IgG and rabbit IgG. A 378 

nitrocellulose membrane was used as the template to mount a recombinant 379 

phosphoprotein of SARS-CoV-2 to confine the IgG. Nineteen samples tested previously 380 

with reverse transcription PCR (RT-PCR) were then re-tested with the LFIA, which was 381 

found to detect anti-SARS-CoV-2 IgG in ~10 minutes. Therefore, the LFIA can allow 382 

positive identification of SARS-CoV-2 in potential cases, and be effectively used to 383 

monitor COVID-19 progression and patient responses to treatment.      384 
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Biosensor technology is generally promising, however, there are many challenges to 385 

overcome, emphasising why the technology still needs comprehensive research to 386 

develop a high-quality sensor for point-of-care diagnostics. These challenges include 387 

reproducibility, surface preparation and immobilisation conditions, incubation time and 388 

temperature, type of biological fluid used, and sample loading. Further, insufficient 389 

selectivity and specificity of many of these tests means they are currently unreliable. 390 

These factors may restrict the effective use of this technology for overall SARS-CoV-2 391 

detection (94). 392 

7. Conclusions 393 

This review has primarily focussed on the applications of NPs, and their interactions 394 

with relevant SARS-CoV-2 proteins, as well as suggestions on how NPs maybe used to 395 

combat COVID-19. Furthermore, existing drugs that maybe repurposed against COVID-396 

19, and natural and synthetic compounds that might be enhanced in conjunction with 397 

NPs have also been included. Little is currently known about NP-based drug delivery 398 

systems for SARS-CoV-2, and a thorough understanding of the pathogenesis of this 399 

novel coronavirus is required to aid development of effective agents. A collaborative 400 

global effort is required to find treatments, and the over-arching aim should be to 401 

develop anti-virals based on previous work, as not only will this save time, but is likely to 402 

work. Further enhancement of these through combination with NPs may well allow 403 

effective application of the drug. 404 

As SARS-CoV-2 is a recently identified virus, any attempts to tackle this should be 405 

complemented with in silico studies, to optimise the NP-drug interaction. Computer 406 

simulations have allowed effective interpretation of experimental data (95), e.g. the 407 

widely used carrier protein bovine serum albumin (BSA) adsorbing to a silica surface. 408 

Simulation has also previously facilitated the development of a new model NP-based 409 

vaccine using gonadotrophin releasing hormone 1 (GnRH-I) with silica NPs (96). 410 

Computer simulation is currently being used widely to aid efforts against the COVID-19 411 

pandemic, be that in exploring the repurposing of existing drugs (58) (56) (67) (63) (66), 412 

or the development of new systems with natural compounds (79) (66) (87). In our view, 413 
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this approach will help design and deliver new therapies and diagnostics, not only to 414 

fight COVID-19, but future viral threats that may emerge. 415 

 416 

  417 
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