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Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due

to mutation lead to dysregulated protein expression and contribute to a substantial fraction of

human disease. Several classes of splicing modulator compounds (SMCs) have been recently

identified and establish that pre-mRNA splicing represents a target for therapy. We describe

herein the identification of BPN-15477, a SMC that restores correct splicing of ELP1 exon 20.

Using transcriptome sequencing from treated fibroblast cells and a machine learning

approach, we identify BPN-15477 responsive sequence signatures. We then leverage this

model to discover 155 human disease genes harboring ClinVar mutations predicted to alter

pre-mRNA splicing as targets for BPN-15477. Splicing assays confirm successful correction of

splicing defects caused by mutations in CFTR, LIPA, MLH1 and MAPT. Subsequent validations

in two disease-relevant cellular models demonstrate that BPN-15477 increases functional

protein, confirming the clinical potential of our predictions.
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RNA splicing is a complex and tightly regulated process that
removes introns from pre-mRNA transcripts to generate
mature mRNA. Differential processing of pre-mRNA is

one of the principal mechanisms generating diversity in different
cell and tissue types. This process can give rise to functionally
different proteins and can also generate mRNAs with different
localization, stability, and efficiency of translation through alter-
native splicing of UTRs. RNA splicing requires the widely con-
served spliceosome machinery along with multiple splicing
factors1. The splicing reaction is directed by specific sequences,
including the 5′ and 3′ splice sites, the intron branch point, and
splice site enhancers and silencers found in both exons and
introns2. Changes in the sequence of these elements, through
inherited or sporadic mutations, can result in deficient or aber-
rant splice site recognition by the spliceosome. Disruption of
splicing regulatory elements can generate aberrant transcripts
through complete or partial exon skipping, intron inclusion or
mis-regulation of alternative splicing, while mutations in the
UTRs may affect transcript localization, stability, or efficiency of
translation. Mutations that alter mRNA splicing are known to
lead to many human monogenic diseases including spinal mus-
cular atrophy (SMA), neurofibromatosis type 1 (NF1), cystic
fibrosis (CF), familial dysautonomia (FD), Duchenne muscular
dystrophy (DMD), and myotonic dystrophy (DM), as well as
contribute to complex diseases such as cancer and diabetes3–18.
The emergence of high throughput sequencing of large disease
cohorts19–21, and the remarkable efforts to aggregate and anno-
tate these mutations in an accessible infrastructure such as
ClinVar22, now provides an unprecedented opportunity to apply
deep learning approaches to predict mutations that affect pre-
mRNA splicing23. The potential of developing such models will
continue to increase as next-generation transcriptome sequencing
(RNASeq) data are amassed and curation of the associated
mutational processes matures23–26.

Therapeutic approaches aimed at correction of pre-mRNA
splicing defects, including antisense oligonucleotides, splicing
modulator compounds (SMCs), and modified exon-specific
U1 small nuclear RNA, have shown significant promise in
many diseases27–35. SMCs are attractive because they can be
optimized for broad tissue distribution and are orally
administered27,36,37. With advances in precision medicine and
the capability to discover patient-specific mutations, there is
strong impetus to develop methods to predict if a drug might be
beneficial in a specific patient. Deep learning techniques offer the
potential to accomplish this at scale by integrating genomic data
with annotation databases and relevant information about
mutational mechanisms38. Deep learning models have been
successfully applied to a spectrum of biological topics, including
genotype-phenotype correlation studies39, identification of dis-
ease biomarkers40, and identification of protein binding motifs41.
Here, we applied and optimized a specific deep convolutional
neural network (CNN) to discover motifs that are likely to be
responsive to BPN-15477, a potent SMC of the ELP1 pre-mRNA
carrying the major FD splice mutation IVS20+ 6T > C. We
identified 155 genes harboring pathogenic ClinVar mutations,
each predicted to disrupt pre-mRNA splicing, that could be
corrected by BPN-15477 treatment, and validated several using
minigenes or patient cells. These studies suggest that the inte-
gration of genomic information, clinical annotation of disease-
associated variants, and deep learning techniques have significant
potential to predict therapeutic targeting for precision medicine.

Results
Discovery of the splicing modulator BPN-15477. Several small-
molecules have been developed to selectively modulate the

splicing of specific pre-mRNAs, offering potential treatments for
SMA and FD27,36,37,42–45. One such compound, kinetin (6-fur-
furylaminopurine), was previously shown to promote exon 20
inclusion in the Elongator complex protein 1 gene (ELP1, MIM:
603722) in FD44,46. Although kinetin is a naturally occurring
compound with a safe absorption, distribution, metabolism, and
excretion (ADME) profile, very high doses are necessary to
achieve modest ELP1 splicing correction in vivo47,48. As part of
the NIH Blueprint Neurotherapeutics Network, we identified a
class of highly potent SMCs that selectively modulate ELP1 pre-
mRNA splicing and increase the inclusion of exon 2049. BPN-
15477 (Fig. 1a) increases full-length ELP1 mRNA by increasing
exon 20 inclusion and is significantly more potent and efficacious
than kinetin in our luciferase splicing assay (Fig. 1b,c) and in FD
patient cell lines (Fig. 1d). Previously, we showed that a modest
increase in ELP1 protein rescued neurologic phenotypes in a
phenotypic mouse model of FD50. Therefore, we evaluated BPN-
15477 in vivo to confirm that splicing correction can lead to a
concomitant increase in ELP1 protein. We treated the TgFD9
transgenic mouse51, which carries the human ELP1 gene with the
major FD splice mutation, once daily via oral gavage for 7 days,
and mice were sacrificed 1 h after the last dose. Treatment
increased full-length ELP1 transcript in a dose-dependent man-
ner and, importantly, led to at least a two-fold increase in func-
tional ELP1 protein in brain, liver, kidney, heart, and skin
(Fig. 1e, f, Supplementary Fig. 1a–c). In addition, the treatment
was well tolerated, no weight loss or adverse effects were observed
in the treated groups, and the level of splicing correction corre-
lated with BPN-15477 tissue distribution (Supplementary Fig.
1d–e). These results clearly demonstrate that treatment with
BPN-15477, which corrects splicing of the ELP1 transcript, sig-
nificantly increases the level of functional protein in vivo in all
tissues, including brain.

Evaluation of BPN-15477 on transcriptome splicing. To esti-
mate the potential for BPN-15477 to influence transcriptome-
wide splicing, we treated six wild-type (WT) human fibroblast cell
lines with 30 μM BPN-15477 or vehicle (DMSO) for 7 days and
performed RNA-seq to evaluate changes in exon inclusion
(Supplementary Table 1). Splicing differences were determined by
counting the RNASeq reads covering two junctions of three
consecutive exons (exon triplets) and by comparing the change in
percent spliced-in (ΔPSI or Δψ) of the middle exon after treat-
ment (Fig. 2a, see “Methods”)52,53. We identified 934 exon triplets
that showed differential middle exon inclusion or exclusion in
response to BPN-15477 treatment: 254 with increased exon
inclusion (Δψ ≥ 0.1 and FDR < 0.1), and 680 with increased exon
exclusion (Δψ ≤−0.1 and FDR < 0.1, Fig. 2b and Supplementary
Data 1). BPN-15477 modulates splicing selectively as we observed
splicing changes in only 0.58% of all expressed triplets (934 out of
161,097 expressed triplets). To experimentally confirm the accu-
racy of the PSI changes measured by RNASeq, we performed
independent treatment experiments and evaluated exon inclusion
using RT-PCR (Fig. 2d–g, Supplementary Table 2) and found the
estimated percent exon inclusion to be remarkably consistent
with the calculated Δψ values (Fig. 2c).

Convolutional neural network identifies sequence signatures
responsible for BPN-15477 response. Pre-mRNA splicing is
regulated by both exonic and intronic sequence elements. These
sequences govern interaction with the spliceosome and splicing
factors and regulate the fate of exon recognition and inclusion2,54.
We hypothesized that sequence signatures within the exon tri-
plets are a key determinant of drug responsiveness. To identify
the sequence motifs, we trained a CNN model using the
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inclusion-response set (254 exon triplets), exclusion-response set
(680 exon triplets), and the unchanged-response set (382 exon
triplets with two expressed isoforms, Δψ < 0.01 and FDR ≥ 0.1,
Supplementary Data 1). We randomly divided these sequences
into three non-overlapping groups, namely the training set (70%),
the validation set (20%), and the test set (10%, see “Methods”).

The network consisted of two layers of convolutions with a total
of 2.5 million trainable parameters (Supplementary Fig. 2a) and
was optimized for predicting splicing changes in every given exon
triplet after BPN-15477 treatment. Our model achieved an
average area-under-the curve (AUC) of 0.85 (Supplementary
Figs. 2b–c). To evaluate the reproducibility of our model, we first
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Fig. 1 Identification of the small molecule splicing modulator BPN-15477. a Molecular structure of BPN-15477 compared to kinetin, the northern
heterocycle and C-2 substitution are indicated in red. b Schematic representation of the dual-reporter minigene used to measure splicing. Rluc and Fluc
indicate Renilla and Firefly luciferase, respectively. A/C indicates the start codon mutation in Fluc and taagC indicates the location of the FD mutation. c
Dose–response curves for kinetin and BPN-15477. Rluc-FD-Fluc transfected HEK293T cells treated for 24 h. Normalized relative luciferase units (RLU),
which refer to the ratio between firefly and renilla luciferase and provide a measure of exon 20 inclusion, are plotted as a function of compound
concentration. Assays were run in triplicate and curves were created by nonlinear regression using Prism4 (n= 3) (GraphPad Software Inc.). Data are
presented as mean values ± SD. d Representative validation of BPN-15477 splicing correction in FD fibroblasts. Cells were treated for 24 h at the
concentrations indicated. We independently repeated this experiment six times (n= 6). e, f Relative expression of full-length (FL) and Δ20 ELP1 mRNA
(left panel), and ELP1 protein quantification (right panel) in brain and liver after oral doses of BPN-15477 ranging from 10 to 100mg/kg in adult transgenic
TgFD9 mouse (n= 4 mice in the 100mg/kg treatment group and n= 6 mice in the other groups). Comparisons are done within the same color-coded
group, against the vehicle-treated mice under two-tailed Welch’s t-test. Data are presented as mean values ± SD. The unadjusted p values are displayed. In
the figure, *p < 0.05; **p < 0.01; ***p < 0.001.
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implemented random initialization of our training process 1000
times and found that the performance of all models was tightly
distributed and aligned with our original model (Supplementary
Fig. 2d). In addition, we found all of the top 10 first-layer filters
contributing to the performance of our CNN model were highly
correlated with those of the 1000 random-initialized models
(average Pearson correlation R2= 0.55, Supplementary Fig. 2e),
suggesting that our deep learning framework was robust. We
identified 39 5-mer motifs from the first layer of the CNN model
that best explain drug responsiveness (Supplementary Fig. 3).

Note, the treatment response was not determined by any of
these motifs independently. Instead, the CNN model utilized the
synergistic effect of all the motifs on a given sequence to make the
classification decision. Thirteen of these motifs explained 92.62%
of the AUC, each of which altered more than 0.05 of AUC for at
least one class of prediction (see “Methods”, Fig. 3a). Importantly,
analysis of these motifs revealed that the sequence in proximity
to, and in many cases encompassing, the 5′ splice site of the
middle exon had the largest influence in modulating treatment
response (see “Methods”, Fig. 3b). These results emphasized the
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importance of the 5′ splice site in determining treatment out-
come. In silico saturation mutagenesis (see “Methods”) further
supported these findings, revealing that base contribution to the
treatment outcomes peaked around the 5′ splice sites of the
middle exons, with distinct patterns amongst sequences with
inclusion, exclusion and unchanged responses (Supplementary

Fig. 4). To assess the robustness of the motifs identified by our
CNN model, we compared the similarities of the 13 CNN-
identified motifs with the most enriched five-nucleotide combi-
nations (5-mer) at 5′ splice sites of the middle exons in our
training set. The 5-mer sequence enrichment analysis for
nucleotides at positions −3 to +7 of 5′ splice sites was highly
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correlated with motifs identified by the CNN model (Supple-
mentary Fig. 5a). We and others previously reported that SMCs
with chemical structures similar to BPN-15477 promote, either
directly or indirectly, the recruitment of U1 snRNP, to non-
canonical 5′ splice sites, which have weak splice site strength
scores45,46. Therefore, we evaluated splice site strength using
MaxEntScan55 and found that the 5′ splice site of the middle exon
is significantly weaker when exon inclusion is enhanced by
treatment (Fig. 3c). Intriguingly, the splice site strength did not
distinguish the exon triplets that show an exclusion response.

We next sought to determine if our CNN model could predict
treatment response in mutated exon triplets. We generated
minigenes for treatment responsive alternatively spliced triplets in
PARP6, SETD5, and CPSF7. These genes were chosen because
their genomic triplet length enabled evaluation in an appropriate
splicing vector. We mutated nucleotides in silico between
positions +2 and +6 in the 5′ splice site of each triplet and
used our CNN model to predict treatment response. Mutations
predicted to be responsive were introduced into the minigenes
and splicing was evaluated by RT-PCR. In all three minigene
splicing assays, the RT-PCR data confirmed our CNN model
predictions for mutant triplets (Fig. 3d, e, Supplementary Fig. 5b).
Therefore, our CNN model will allow us to evaluate the potential
therapeutic value of BPN-15477 on human splicing mutations.

Identification of potential therapeutic targets of BPN-15477.
To evaluate the predictive power of our CNN model to determine
which human disease-causing mutations might respond to
treatment with BPN-15477, we first identified the pathogenic
mutations that alter splicing in ClinVar. We considered all 89,642
annotated pathogenic or likely-pathogenic mutations (CV-
pMUTs) and predicted their influence on splicing using
SpliceAI23. We found that ~20% of all CV-pMUTs are predicted
to alter splicing within 50 bp of the mutation, and that ~80% of
these disrupt Ensembl-annotated (GRCh37 version 75) splice
sites (Fig. 4a). We next used our CNN model to predict which
genes harboring CV-pMUTs might respond to BPN-15477
treatment. We found the splice sites impacted by 14,272 CV-
pMUTs from SpliceAI prediction exactly mapped to the splice
sites of 11,616 exon triplets. Our CNN model predicted that 271
of these triplets should be responsive to BPN-15477 treatment
(Supplementary Data 2) and identified 155 genes that harbor 214
annotated disease-causing mutations that could be targets for
splicing correction using BPN-15477. The responsive genes
containing the top 20 most frequent mutations (gnomAD v2.1.1)
and their associated human diseases are shown in Table 1.

Examination of Table 1 demonstrates the remarkable therapeutic
potential of this class of splicing modulators.

Experimental validation of therapeutic targets for BPN-15477.
To evaluate whether BPN-15477 ameliorates aberrant splicing
events, we searched for available human cell lines carrying the
splicing mutations predicted to respond to our treatment (Sup-
plementary Data 2). From the Coriell cell repository we were able
to obtain a cell line with the c.894G > A mutation in the LIPA
gene (Table 1)56. Mutations in LIPA cause both the severe
infantile-onset Wolman disease and the milder late-onset cho-
lesterol ester storage disease (CESD)57–59 (MIM# 278000)60. The
c.894G > A mutation leads to skipping of exon 8 and is respon-
sible for the milder CESD. This is the most common LIPA gene
mutation and it is found in 50% of individuals with lysosomal
acid lipase (LAL) deficiency61. To validate the treatment effect on
the splicing of exon 8, patient cells were treated with 60 µM of
BPN-15477 for 24 h. As predicted, the treatment promoted the
inclusion of exon 8, with mutated cells showing a 10% increase in
normal transcript levels (Fig. 4b). To overcome the limitations in
available patient cell lines harboring specific splicing mutations,
we prioritized our experimental validations based on the avail-
ability of minigene constructs. Previous work has established that
an expression minigene (EMG) system containing the full-length
CFTR coding sequence is a reliable model for the study of variants
that impact mRNA splicing62–66. To evaluate the efficacy of BPN-
15477 to correct CFTR aberrant splicing caused by the c.2988G >
A mutation (Supplementary Data 2), we generated a Flp-In-293
stable cell line expressing c.2988G > A CFTR-EMG-i14-i18 that
contains full-length introns 14 and 16, and abridged introns 15,
17, and 18. The c.2988G > A variant is located in the last
nucleotide position of exon 18 and results in a synonymous
change (Gln996Gln) at the protein level. However, this variant
also alters the 5′ splice donor site of intron 18 leading to exon
18 skipping64. RT-PCR using CFTR-specific primers revealed
about 3% normal spliced transcript in the Flp-In-293 stable cells
expressing 2988G > A (Fig. 4c). Treatment with BPN-15477 at
60 µM for 5 days increased exon 18 inclusion by 10% (Fig. 4c)
confirming our CNN model prediction. We also generated a
MLH1 minigene spanning exons 16–18 harboring the c.1989G >
A mutation (Supplementary Data 2) which leads to skipping of
exon 17 and causes hereditary nonpolyposis colorectal cancer
(HNPCC) or Lynch syndrome (MIM# 120435)14,67. As predicted,
the treatment significantly increased exon 17 inclusion in cell
lines expressing the mutated minigene (Fig. 4d, Supplementary
Data 2).

Fig. 3 Convolutional neural network achieves high performance in predicting drug response and reveals sequence motifs that contribute to drug
sensitivity. a Heatmap of the top 13 motifs predicted to contribute to inclusion (red), exclusion (blue), or unchanged (black) response. The color bar
indicates the directional contribution of each motif. The brown domain indicates positive contribution while the blue domain indicates negative
contribution. The LOGO plot of each motif is shown on the left side of the heatmap. b Heatmap of motif importance at each position within XI2 region at
the 5′ splice site of the middle exon. The thick vertical line shows the exon–intron boundary. The bar indicates the positional importance, measured by
positional activation in the first layer of the CNN model. c Box plot showing the strength of each splice junction along the exon triplets for inclusion (red),
exclusion (blue), and unchanged (black) group defined by the RNASeq. The middle lines inside boxes indicate the medians. The lower and upper hinges
correspond to the first and third quartiles. Each box extends to 1.5 times inter-quartile range (IQR) from upper and lower hinges, respectively. Outliers are
not shown. The unadjusted p values from two-tailed Welch’s t-test are displayed. d, e Upper row: Schematic representations of PARP6 and SETD5 triplet
minigene. The length of the exon triplets cloned into the minigenes is shown. The sequences adjacent to the 5′ splice site of the middle exon are shown in
LOGO plots. The height of each nucleotide was estimated using in silico saturation mutagenesis (see “Methods”). The red coordinate numbers indicate the
positions of mutations relative to the 5′ splice sites. Their closely matched CNN motifs are indicated beneath. Middle row: Splicing changes of the middle
exons in both wild type and mutated exon triplets, predicted by the CNN model (left) and measured by RT-PCR of the minigene (right). To generate the bar
plots of RT-PCR each experiment was repeated six times (n= 6, two-tailed Welch’s t-test). Data are presented as mean values ± S.D. The unadjusted p
values are displayed. Bottom row: Example of splicing changes induced by the treatment using a minigene splicing assay. The percentage of middle exon
inclusion is indicated beneath each lane. In the figure, *p < 0.05; **p < 0.01; ***p < 0.001.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23663-2

6 NATURE COMMUNICATIONS |         (2021) 12:3332 | https://doi.org/10.1038/s41467-021-23663-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Finally, to validate the utility of our treatment to promote exon
skipping as a therapeutic modality, we searched for drug
responsive disease-causing mutations that lead to abnormal
middle exon inclusion. The MAPT gene is associated with
familial frontotemporal dementia and parkinsonism linked to
chromosome 17 (FTDP-17, MIM# 600274)68–71. In healthy

human brains, the alternative splicing ofMAPT exon 10 is strictly
regulated to maintain equal amounts of the 3R (exon 10 skipped)
and 4R (exon 10 retained) tau isoforms. Disruption of this
balance by increased 4R tau increases the risk of developing FTD.
The c.1866+ 3G > A mutation, commonly referred to IVS10+ 3,
in the MAPT gene increases the inclusion of exon 10 and is
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associated with FTDP-17. Our CNN model predicted that the
mutated sequence would be responsive to BPN-15477 and the
treatment would promote exon 10 exclusion, thereby potentially
restoring 3R/4R balance (Supplementary Data 2). We generated
HEK293 cells stably expressing a MAPT minigene encompassing
exons 9–11 and partial introns 9 and 10 with both the wild type
sequence and the c.1866+ 3G > A mutation. As predicted,
treatment with BPN-15477 led to a significant reduction of exon
10 inclusion in the wild-type MAPT transcript. Unfortunately,
introduction of the c.1866+ 3G > A mutation in the minigene
context completely disrupted exon 10 skipping in both the DMSO
and BPN-15477 treated minigenes (Supplementary Fig. 5c).
However, it is known that in the human brain the c.1866+ 3G >
A mutation “leaks” a detectable amount of 3R tau isoform72,
suggesting that treatment with a splicing modulator in vivo might
still increase the level of 3R tau.

Given the importance of identifying therapeutics that modulate
the 3R/4R tau ratio, combined with our demonstration that BPN-
15477 can promote skipping of MAPT exon 10, we next evaluated
the most common MAPT mutation, a C to T substitution in
intron 10, c.1866+ 16C > T, commonly called IVS10+ 16.
Although this mutation increases inclusion of exon 1068, it did
not appear in our list of responsive mutations because SpliceAI

did not correctly predict its effect on splicing. We applied our
CNN model to the MAPT c.1866+ 16C > T exon triplet, which
predicted that BPN-15477 would promote exon 10 exclusion in
the mutated triplet. Generation and evaluation of both wild-type
and mutant minigenes confirmed our prediction (Fig. 4e).

Taken together, these results suggest that BPN-15477 and other
SMCs of this class might be an effective therapy for reducing the
inclusion of exon 10 in MAPT, thereby delaying or ameliorating
disease symptoms in patients carrying mutations that disrupt the
balance of exon 10 inclusion. Our success in validating several of
our CNN model predictions in both human cells and minigenes
demonstrates that deep learning methods can be effectively
applied to identify therapeutic targets for known splicing
modulators, and further sets the stage for evaluating their
effectiveness across a wide range of human genetic diseases.

BPN-15477 treatment increases LIPA and CFTR protein in
disease-relevant cellular models. Previously, we have shown that
splicing correction of ELP1 results in an increase of functional
protein that can rescue neurologic phenotypes in an FD mouse
model50. Further, other splice-correcting therapies for SMA,
including ASOs (nusinersen) and small molecules (risdiplam),

Fig. 4 Identification of therapeutic targets for BPN-15477. aWorkflow to identify all potential therapeutic targets for BPN-15477. SpliceAI was applied on
all ClinVar pathogenic mutations (CV-pMUTs) and the CNN model was used to determine whether CV-pMUTs disrupting annotated splice sites would be
rescued by BPN-15477 treatment. The bar plot shows the percentage of each CV-pMUT category. b–e Upper row: the sequences at the 5′ splice site of
LIPA Exon 8 in patient cells (b) and minigene constructs for CFTR,MLH1, andMAPT (c–e) are shown. The sequences around the 5′ splice sites of the middle
exon are shown in LOGO plots, with closely matched CNN motifs indicated below. The red coordinate numbers indicate the position of mutations
introduced mutations. The bar plots demonstrate the CNN model prediction of treatment response for the mutated sequences. Middle row: RT-PCR
validation of treatment responses in cell lines carrying the specific splice mutation or the mutated minigene. The band marked by arrowhead in (d) was
verified by sequence analysis that showed usage of a cryptic 5′ splice site at +31. To generate the bar plots, each experiment was repeated six times.
Bottom row: The bar plots demonstrate the splicing change promoted by BPN-15477 treatment (n= 6). Data are presented as mean values ± S.D. The
statistical significance is determined via two-tailed Welch’s t-test. The unadjusted p values are displayed. In the figure, *p < 0.05; **p < 0.01; ***p < 0.001.

Table 1 ClinVar pathogenic mutations predicted to be rescued by BPN-15477 treatment and selected based on top populational
allele frequencies in gnomAD (v2.1.1).

Gene Mutation Frequency Molecular consequence
(ClinVar)

Splicing
(SpliceAI)

Predicted drug
response

Disease

IL36RN c.115+ 6T > C 1.00E−03 Intronic Loss Inclusion Pustular psoriasis
LIPA c.894G > A 8.28E−04 Synonymous Loss Inclusion Lysosomal acid lipase deficiency
DNAH9 c.1970+ 4A >G 3.18E−04 Intronic Loss Inclusion Ciliary dyskinesia
CA5A c.555G > A 1.67E−04 Synonymous Loss Inclusion Carbonic anhydrase VA deficiency
ORC6 c.449+ 5G > A 1.63E−04 Intronic Loss Inclusion Meier-Gorlin syndrome 3
SRD5A2 c.547G > A 1.59E−04 Missense Loss Inclusion 3-Oxo-5 alpha-steroid delta 4-

dehydrogenase deficiency
DGUOK c.591G > A 1.27E−04 Intronic/synonymous Loss Inclusion Mitochondrial DNA-depletion

syndrome 3
HBB c.92G > A 1.03E−04 Missense Loss Inclusion Beta thalassemia
PIGN c.963G > A 8.31E−05 Synonymous Loss Inclusion Multiple congenital anomalies-

hypotonia-seizures syndrome 1
NPHP1 c.1027G > A 6.37E−05 Missense Loss Inclusion Nephronophthisis
KDSR c.879G > A 6.37E−05 Synonymous Loss Inclusion Erythrokeratodermia variabilis et

progressive 4
SLC12A1 c.1942G > A 6.37E−05 Missense Loss Inclusion Bartter syndrome, type 1
NSD1 c.6152-5T > G 5.96E−05 Intronic Loss Inclusion Beckwith-Wiedemann syndrome
PARN c.659+ 4_659+

7delAGTA
4.63E−05 Intronic Loss Inclusion Dyskeratosis congenita

GLA c.639+ 919 G > A 4.53E−05 Intronic Gain Exclusion Fabry disease
ATM c.2250G > A 4.39E−05 Synonymous Loss Inclusion Ataxia-telangiectasia syndrome
POLG c.3104+ 3A > T 3.98E−05 Intronic Loss Inclusion Progressive sclerosing poliodystrophy
GPX4 c.476+ 5G > A 3.65E−05 Intronic Loss Inclusion Spondylometaphyseal dysplasia
GYPA c.232G > A 3.60E−05 Missense Loss Inclusion Blood group erik
MYO7A c.2904G >A 3.20E−05 Synonymous Loss Inclusion Usher syndrome, type 1
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show a direct correlation between splice correction and an
increase in functional protein. To demonstrate that the same is
true for a subset of our predicted targets, we treated patient
fibroblasts carrying the major LIPA splicing mutation, c.894G >
A, with 60 µM of BPN-15477 for 7 days. The treatment led to a
10% increase in functional LAL enzyme in mutated cells (Fig. 5a).
Considering that a 3% increase in residual LAL enzyme activity is
enough to distinguish Wolman disease, which is lethal in infancy,
from the much milder CESD60, a 10% increase in functional LAL
would be predicted to have clinical benefit. Similarly, several
published studies have shown that a small increase in CFTR

function translates into improved lung function and survival for
individuals with cystic fibrosis (CF, MIM# 219700), even in
moderate to advanced stages of disease73–78. CFTR-EMG
expressing stable cell lines are an effective in vivo experimental
system for evaluating the effectiveness of splicing modulation on
CFTR protein production and chloride channel function66. To
this end, we first assessed CFTR protein levels in Flp-In-293 cells
stably expressing the c.2988G > A splicing variant after treatment
with BPN-15477 for 5 days. Examination of Fig. 5b shows that the
WT CFTR EMG_i14-i18 control cell line produces pre-
dominantly the higher molecular weight, complex-glycosylated
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Fig. 5 BPN-15477 treatment increases LIPA and CFTR protein in disease-relevant cellular models. a Western blot analysis of LIPA protein in patient
fibroblasts carrying the c.894G > A mutation. Left: Top and bottom panels show the blot probed with anti-LIPA and anti-ß-Actin antibody, respectively.
Right: Bar chart showing the densitometric analysis of the western blot expressed as percentage of WT. LIPA was normalized to ß-Actin. To generate the
bar plot, the experiment was independently repeated six times (n= 6). b Western blot analysis of CFTR protein in 293-Flpin cells stably expressing WT-
EMG-i14-i18 or c.2988G > A-EMG-i14-i18. 293-Flpin cells with no endogenous expression of CFTR protein served as negative control. Left: Top and bottom
panels show the blot probed with anti-CFTR and anti-Na+K+ATPase antibody, respectively. Right: Bar plot showing the densitometric analysis of the
western blot expressed as percentage of mature CFTR protein, band C. Amount of mature CFTR protein was normalized to Na+K+ATPase. To generate the
bar plot, the experiment was independently repeated six times (n= 6). In (a) and (b), data are presented as mean values ±S.D. The statistical significance
is determined via two-tailed Welch’s t-test. The unadjusted p values are displayed. c CFTR chloride channel analysis in CFBE-Flpin cells stably expressing
c.2988G > A-EMG-i14-i18. Left: A representative tracing of short-circuit current (Isc) measurements recorded in Ussing chambers after treatment of cells
with either DMSO (vehicle) or variable doses of BPN-15477 for 72 h, as indicated on the figure labels. Cells were mounted on Ussing chambers to measure
CFTR mediated chloride channel. After stabilization of the basal current, forskolin (10 μM) was added to the basolateral chambers followed by CFTR
potentiator, Ivacaftor (10 μM), and CFTR Inhibitor 172 (10 μM) added to the apical chambers. Right: the bar plot indicates recovery of CFTR function upon
treatment of cells with BPN-15477. Change in Isc (ΔIsc), a measure of CFTR function, was defined as the current inhibited by Inh-172 after sustained Isc
responses were achieved upon stimulation with forskolin (Fsk, n= 4 Isc measurements per treatment) alone or sequentially with ivacaftor (Iva, n= 2 Isc
measurements per treatment). Data are presented as mean values ± SD. The statistical significance is determined via two-tailed Welch’s t-test when
forskolin-stimulated CFTR function was compared between BPN-15477 treated and DMSO (vehicle) treated cells. The unadjusted p values are displayed. In
the figure, *p < 0.05; **p < 0.01; ***p < 0.001.
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mature protein (band C ~ 170 kDa) as well as some lower mole-
cular weight, core-glycosylated immature protein (band B). Flp-
In-293 c.2988G > A stable cells treated with DMSO produce ~3%
of WT complex-glycosylated mature CFTR protein while treat-
ment with 60 µM BPN-15477 for 5 days increases the amount of
mature CFTR protein to ~20% of WT (Fig. 5b).

Last, we tested the ability of BPN-15477 to rescue chloride
channel function. We created CF bronchial epithelial (CFBE) cell
lines that stably express the splicing mutation c.2988G > A. Cells
were grown in monolayers on filters and treated with increasing
doses of BPN-15477 (0.3–10 µM) or DMSO for 3 days. Chloride
channel function was assessed by measuring short-circuit current
(Isc) on treated CFBE cells. Forskolin was added to initiate CFTR
channel activity via cAMP-mediated signaling, with further
channel activation by Ivacaftor and finally inhibition with Inh-
172, a CFTR-specific inhibitor (Fig. 5c, representative Isc tracing).
CFTR-specific change in current (ΔIsc ± SD) allows for measure-
ment of chloride channel function (Fig. 5c). Residual CFTR
channel activity was observed in DMSO treated CFBE stable cells
expressing c.2988G > A (ΔIsc= 12.3 ± 2.7 μA/cm2, Fig. 5c), which
is consistent with previous reports showing that the c.2988G > A
variant is associated with abnormal CFTR function and causes a
mild form of CF79. Significant recovery of CFTR function (~3-
fold) was observed following treatment with BPN-15477 at 1, 3, 6,
and 10 µM for 3 days, with a maximal increase in CFTR function
achieved using 3 µM of BPN-15477 (ΔIsc= 37.168 ± 4.32 μA/cm2,
Fig. 5c). Importantly, the acute addition of Ivacaftor resulted in
~2-fold improvement in CFTR function in BPN-15477 treated
cells. These results show that BPN-15477 treatment alone
increased chloride channel function to ~20% of WT, and to
~30% of WT in combination with Ivacaftor66. As expected, the
improvement in chloride channel function mediated by BPN-
15477 correlates with a significant increase in exon 18 inclusion
(Supplementary Fig. 6). Given that slight residual CFTR function
is known to lead to mild CF, the increase in chloride channel
function by treatment with BPN-15477 would be predicted to be
clinically significant.

Discussion
The development of drugs that can increase the amount of nor-
mal transcript through modulating RNA splicing in patients is a
precisely targeted treatment approach aimed directly at the pri-
mary molecular disease mechanism without altering the genome.
The recent success of splicing modulation therapies for DMD
(exondys 51) and SMA (nusinersen, risdiplam rg7800,
branaplam)42,43 has validated the utility of splicing modification
as a valuable therapeutic strategy for human disorders. Here, we
have identified a compound, BPN-15477, that corrects splicing of
ELP1 in a minigene system and in FD patient cell lines. Further,
in vivo splicing correction of ELP1 in a humanized transgenic
mouse model leads to an increase of ELP1 protein in all tissues,
including brain, at a level that would be therapeutic since we have
previously shown that even a small increase in functional protein
has a dramatic effect on neurologic disease phenotype50.

To determine the potential of the tool compound BPN-15477
to correct splicing of other genes, we developed a machine
learning approach that uses sequence signatures to predict tar-
getable splicing defects. Our CNN model identified a total of 39 5-
mer motifs important for drug response, with 13 motifs
accounting for most of the BPN-15477 sensitivity when motifs are
located close to the 5′ splice site. Note, our model achieved an
acceptable performance level (Supplementary Fig. 2b) with a
training set of ~1000 non-redundant events, which is a relatively
small size for a typical deep learning problem. This might be due
to the following two reasons. First, we observed that the trained

model scored highly with a short region of ~8 bp (out of a 400 bp
training region) flanking the 5′ ss of the middle exon, while the
scores of other regions were almost zero (Supplementary Fig. 4).
This suggests the effect site of the treatment might be in a
restricted region relative to 5′ ss, and we might be able to train a
simplified model on shorter sequences with fewer parameters.
Second, we empirically avoided overfitting by applying the L1-
regularization (coefficient= 0.6) in the convolutional layers and
the dropout strategy (see “Methods”) in the hidden layer during
model training. Both of these factors made the model converge
quickly (in 12 epochs, Supplementary Fig. 2b) on a small-
sample size.

Evaluation of splice site strength in drug-responsive triplets
where middle exon inclusion is increased showed that these exons
have weaker 5′ splice sites, a finding consistent with previous
studies45,46,80. We have reported that the splicing defect char-
acteristic of FD is due to the weak definition of ELP1 exon 20 and
the kinetin-analog RECTAS was shown to promote the recogni-
tion of ELP1 exon 20 through recruitment of U1 snRNP at the 5′
splice site45,80. Our CNN model predictions, combined with these
previously published observations, suggest that our SMCs might
act by promoting, either directly or indirectly, the recognition of
weakly defined exons.

It is worth noting that, although the effect of BPN-15477 on
the WT transcriptome was highly selective with only 0.58% of the
expressed exon triplets responding to treatment, the major
advantage of using a predictive model is that it allowed us to
identify human disease-causing gene targets. Application of our
CNN model to all ClinVar pathogenic mutations that disrupt
splicing identified 214 human disease-causing mutations in 155
unique genes as potential therapeutic targets of BPN-15477,
proving that deep learning models are a powerful approach to
explore therapeutic targets for drugs that modify RNA splicing.

As proof of principle, we validated the treatment effect on
splicing for several disease-causing mutations using patient cell
lines or minigenes, and demonstrate the potential therapeutic
feasibility of targeting splicing in patients with cystic fibrosis
(CFTR), cholesterol ester storage disease (LIPA), Lynch syndrome
(MLH1), and familial frontotemporal dementia (MAPT). These
findings could have a significant impact for patients carrying
these mutations. For example, Wolman disease and CESD are
both caused by mutations in LIPA57–59. Wolman is lethal in
infancy, whereas CESD patients have some residual enzyme
activity and therefore have a milder clinical course. Remarkably,
patients with only 3% of the normal level of LIPA transcript have
the much milder disease CESD, and we show that BPN-15477
increases exon 8 inclusion and leads to a 10% increase in func-
tional protein in a patient cell line, suggesting high potential
therapeutic efficacy60. Similarly, several studies have shown that a
small increase in functional CFTR protein is associated with a
significant improvement in patient phenotype73–78. Therefore,
our demonstration that BPN-15477 can correct splicing and
increase chloride channel function to 20% of WT clearly suggests
that our splicing-targeted approach is potentially efficacious.

The ability of BPN-15477 to promote the exclusion of exon 10
in the MAPT gene is particularly exciting given its role in fron-
totemporal dementia. Many FTDP-linked MAPT mutations alter
the splicing of tau exon 10, generally leading to an increase in
exon 10 inclusion and increased expression of 4R tau isoforms,
thereby disrupting the 3R (exon 10 skipped) and 4R (exon 10
retained) tau ratio68–71. Herein we show significant exon 10
exclusion after treatment in both the WT and in the c.1866+
16C > T minigene, which is the most common mutation asso-
ciated with FTD in humans. From a therapeutic perspective,
restoring the 3R/4R tau ratio has the potential to reduce or even
eliminate unbound 4R tau. Our results further suggest that an
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optimized form of this SMC might be beneficial for other forms
of FTD caused by gain of function mutations in exon 10, such as
P301L, P301S, or the S305N, since treatment could reduce the
level of mutated transcript.

To our knowledge, this work represents the first application of
a machine learning approach to analyze the global activity of a
splicing modifier compound and identify therapeutic targets. Our
successful laboratory validation of several of our CNN model
predictions establishes the promise of such approaches and may
presage the future advances in precision medicine offered by deep
learning techniques. Although we recognize that our compound
needs additional medicinal chemistry optimization for any spe-
cific indication in order to increase the potency and reduce the
potential for off-target effects, this study provides a unique way in
which therapeutic targets for small molecule splicing modulators
can be discovered and significantly broadens their potential value
in treating human genetic disease.

Methods
Preparation of BPN-15477 (2-chloro-N-(4-pyridylmethyl)-7H-pyrrolo[2,3-d]
pyrimidin-4-amine). BPN-15477 was manufactured by Albany Molecular
Research Inc. (AMRI) and composition of matter is covered in International
application No. PCT/US2016/013553. Synthesis and analytical data for BPN-15477
are described below. All materials used in the studies were >99% pure, as assessed
by analytical methods including NMR, HPLC, and LC/MS.

To a stirred suspension of 2,4-dichloro-7H-pyrrolo[2,3-d]pyrimidine (1, 5001
mg, 26.60 mmol, 1.000 eq.), obtained from AstaTech Inc., Bristol, PA, in 1,4-
dioxane (50.0 mL) was added 4-(aminomethyl)pyridine (2, 3420 mg, 3.20 mL,
31.6 mmol, 1.19 eq.) followed by N,N-diisopropylethylamine (4450 mg, 6.00 mL,
34.1 mmol, 1.28 eq.) at room temperature. The reaction mixture was then heated to
90 °C and stirred at that temperature overnight.

The reaction progress was monitored by LC-MS analysis of an aliquot of the
reaction mixture. After 12 h, ~6% starting material was detected by LC-MS. The
reaction was quenched by water resulting in an emulsion. The mixture was filtered
through Celite and then washed well with EtOAc (3 × 80 mL). The organic phase
was separated and the aqueous phase was extracted with EtOAc (3 × 40 mL). The
combined organic phases were washed with brine (50 mL) and then dried over
sodium sulfate.

The volatiles were removed under reduced pressure to give the crude product as
dark brown solid. To the crude solid was added EtOAc (100 mL). The mixture was
then heated at reflux for 15 min before it was slowly cooled to room temperature.
The resulting precipitate was collected by filtration, then washed well with cold
EtOAc (30 mL) followed by diethyl ether (100 mL). The solid was dried under high
vacuum overnight to afford 2-chloro-N-(4-pyridylmethyl)-7H-pyrrolo[2,3-d]
pyrimidin-4-amine (BPN-15477) as a light brown solid (3450 mg, 13.3 mmol, 50%
yield).

LC-MS: 0.63 min (254 nm), m/z 260.3, 262.3 [M+H]+, 258.2, 260.2 [M-H]−;
1H NMR (DMSO-d6) δ: 11.65–11.85 (m, 1H), 8.51 (d, J= 6.0 Hz, 2H), 8.45–8.50
(m, 1H), 7.28–7.40 (m, 2H), 7.09–7.21 (m, 1H), 6.53–6.74 (m, 1H), 4.61–4.81
(m, 2H).

The identity and purity of the compound were established through 13C-NMR
(Supplementary Fig. 7).

13C-NMR (500MHz, METHANOL-d4): δ 158.73, 154.58, 152.19, 152.05,
150.06, 124.18, 123.05, 102.99, 99.98, 44.23.

Cell culture. HEK-293T (ATCC) cells were cultured in Dulbecco’s modified Eagle’s
medium (11995-065, D-MEM, Gibco) supplemented with 10% fetal bovine serum
(FBS, 12306C, Sigma) and 1% penicillin/streptomycin (30-009-CI, Corning).

Flp-In 293 cells (R75007, ThermoFisher Scientific) stably transfected with the
CFTR expression minigenes (EMGs)64 or HEK-293T stably transfected withMAPT
minigene, were cultured in D-MEM supplemented with 10% FBS, 1% penicillin/
streptomycin, and 0.1 mg/mL Hygromycin (400052-5ML, Sigma).

Patient human fibroblast GM04663 (Coriell Cell Repository) carrying the
c.2204+ 6T > C mutation in ELP1, GM03111 (Coriell Cell Repository) carrying the
c.894G > A mutation in LIPA, and the human wild-type fibroblasts (Coriell Cell
Repository) listed in Supplementary Table 1 used for RNA sequence were cultured
in D-MEM supplemented with 10% FBS and 1% penicillin/streptomycin.

Treatment of cultured cells. Different batches of BPN-15477 were used for dis-
solution into 100% DMSO to yield 40 mM stock solutions. Working solutions
(10X) were prepared by dilution in 5% DMSO in phosphate-buffered saline (PBS,
10010023 ThermoFisher Scientific). The final DMSO concentration in the treated
or untreated cells was 0.5%. Kinetin was purchased from Sigma (K3253).

Cells to be treated with BPN-15477 are seeded at the appropriate density in
specific vessels so as to reach semiconfluency at the time of treatment. HEK293T

transfected with minigenes were seeded in 6 wells and patient fibroblasts in 10-cm
dishes using the described media. The following day, the media was changed with
regular growth media supplemented with compound or DMSO working solutions
to obtain final concentrations of 60 μM BPN-15477 and 0.05% DMSO. 60 μM
BPN-15477 was chosen to guarantee the maximum effect possible on splicing (Fig.
1b and c). Cells were collected for RNA extraction 24 h after compound or DMSO
addition.

Transfection. HEK293T cells were seeded in 6-well culture plates at 1.20 × 106

cells/well in D-MEM, 10% FBS, without antibiotics and incubated overnight to
reach ~90% confluence the day after. Transfection was performed with FuGENE®
HD Transfection Reagent (E2311, Promega) using the FuGENE-DNA ratio at 3.5:1
and following manufacturer protocol. After 4 h of incubation at 37 °C, cells were
plated at a density of 3 × 104 cells/well in a poly-L-lysine-coated 96-well plate for
the dual-luciferase assay or at the density of 8.5 × 105 cells/well into 6-well plates
for minigene transfection. After 16 h incubation at 37 °C, SMCs or DMSO were
added at the desired concentrations as described above and kept in culture for
other 24 h.

Dual-luciferase splicing assay. Rluc-FD-Fluc plasmid used for the dual-luciferase
splicing assay was derived using the ELP1 FD minigene44 containing the ELP1
genomic sequence spanning exon 19–21 inserted into spcDNA3.1/V5-His Topo
(Invitrogen). Firefly luciferase (FLuc) coding sequence was inserted immediately
after exon 21 and renilla luciferase (RLuc) upstream of exon 19. Characterization of
the assay has shown that RLuc is expressed each time a transcript is generated from
the reporter plasmid, while FLuc is only expressed if exon 20 is included in the
transcript, thereby keeping FLuc in-frame. Evaluation of FLuc/RLuc expression
yields the percent exon inclusion in the splicing assays49. To perform the dual-
luciferase assay HEK-293T were transfected with the described plasmid and treated
with SMCs for 24 h as illustrated above. After treatment the cells were washed once
in PBS and lysed for 25 min at room temperature using 50 µL well of passive lysis
buffer (E1941, Promega). Luciferase activity was measured in 20 μL of cell lysate
using the Dual-Luciferase Reporter Assay reagents (E1960, Promega) and the
GloMax 96 Microplate Luminometer49. The integration time on the luminometer
was set at 10 s. BPN-15477 was serially diluted in DMSO and PBS to generate a
concentration–response curve over eight concentrations. The final concentration of
DMSO in the media was kept at 0.5%. Cells cultured in the presence of 0.5%
DMSO were used as a control.

RNA isolation and RT-PCR analysis. After treatment, cells were collected and
RNA was extracted with QIAzol Lysis Reagent (79306, Qiagen) following the
manufacturer’s instructions. The yields of the total RNA for each sample were
determined using a Nanodrop ND-1000 spectrophotometer.

Reverse transcription was performed using 0.5–1 µg of total RNA, Random
Primers (C1181, Promega), Oligo(dT)15 Primer (C1101, Promega), and
Superscript III reverse transcriptase (18080093, ThermoFisher Scientific) according
to the manufacturer’s protocol. cDNA was used to perform PCR reaction in a
20–25 µL volume, using GoTaq® green master mix (MT123, Promega). Primers
and melting temperature (Tm) used are described (see Supplementary Methods).
To measure the splicing of the minigenes, forward and reverse primers were
designed to include the TOPO/V5 plasmid vector and flanking exon sequence in
order to avoid endogenous gene detection. PCR reaction was performed as follows:
32 cycles of (95 °C for 30 s, Tm for 30 s, 72 °C for 30 s), products were resolved on a
1.5–3% agarose gel, depending on the dimension of the bands to be separated, and
visualized by ethidium bromide staining.

Ratios between isoforms with included or excluded middle exon were obtained
using the integrated density value (IDV) for each correspondent band, assessed
using Alpha 2000TM Image Analyzer and quantified by ImageJ software. The level
of exon inclusion was calculated as the relative density value of the band
representing inclusion and expressed as a percentage.

Protein isolation and western blot analysis. Protein extracts were obtained by
homogenizing cells in RIPA buffer (Tris–HCl 50 mM, pH 7.4; NaCl 150 mM; NP-
40 1%; sodiumdeoxycholate 0.5%; SDS 0.1%, 1 mM DTT) containing protease and
phosphatase inhibitor cocktail (Roche). Insoluble debris were discarded after
centrifugation and protein concentration was determined using Pierce® BCA
Protein Assay Kit (Thermo Scientific). For LIPA WB, 30 µg of protein lysate was
separated on NuPage 10% Bis–Tris gel (Invitrogen) and transferred into nitro-
cellulose membrane (Thermo Scientific). Membrane was blocked in Odyssey
blocking buffer (Licor Biosciences) for 1 h at room temperature and incubated
overnight at 4 °C with the mouse monoclonal antibody against LIPA (Abnova
clone 9G7F12, 1:200) and with the rabbit polyclonal antibody against beta actin
(A2066, Sigma, 1:5000). Membranes were washed three times in PBS with 0.1%
tween 20 and incubated with IRDye secondary antibodies (Licor Biosciences) for
1 h at room temperature. Protein bands were visualized by Odyssey CLx imager
(Licor Biosciences).

For CFTR WB, 40 µg of protein lysate was separated on 7.5% Criterion TGX
protein gel (BioRad). Transfer to PVDF membrane was performed in a Trans-Blot
Turbo Transfer System (BioRad). After blocking in 5% non-fat dry milk (BioRad),
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the membrane was probed with mouse monoclonal anti-CFTR antibody that
recognizes amino acids 1204-1211 (596, CFFT, North Carolina Chapel Hill,
1:5000). Rabbit monoclonal anti-Na+K+ATPase (Abcam, 1:50,000) was used as a
loading control. Secondary antibodies were anti-mouse (GE Healthcare, 1:150,000)
and anti-rabbit (GE Healthcare, 1:100,000), respectively. Blots were exposed on
film using ECL Primer Western Blotting Detection Reagent (GE Healthcare).

CFTR functional assessment and response to BPN-15477. Assessment of CFTR
channel function and response to BPN-15477 was performed in Cystic Fibrosis
Bronchial Epithelial cells (CFBEs) stably expressing c.2988G > A66,81,82. CFBEs
were plated on snapwell filters cultured at 37 °C/5% CO2 in Minimum Essential
Medium (11095098 MEM, ThermoFisher Scientific) supplemented with 10% FBS
(35-010-CV, Corning Cellgro), 1% Pencillin Streptomycin (15140122, Thermo-
Fisher Scientific), and 100 µg/ml Hygromycin (10687010, ThermoFisher Scientific).
When transepithelial resistance reached ~200Ω (~5–7 days) as measured using
Epithelial Volt/Ohm Meter (World Precision Instruments), cells were treated with
BPN-15477 at varying doses (0.3–10 µM) for the next 3 days. Filters were mounted
in Ussing chambers and Isc was measured with a VCC MC6 multichannel voltage-
current clamp amplifier (Physiological Instruments). A high chloride solution (145
mM NaCl, 1.2 mM MgCl2, 1.2 mM CaCl2, 10 mM glucose, 10 mM HEPES, pH 7.4)
was added to the basolateral chamber and a low chloride solution was added to the
apical chamber. Buffers in both chambers were maintained at 37 °C and air was
bubbled in to introduce circulation. After equilibration of currents, 10 µM forskolin
(Selleckchem) was added to the basolateral side to activate CFTR channels via
cAMP signaling. Currents were allowed to plateau, followed by acute addition of
10 µM ivacaftor at apical side for CFTR potentiation (Selleckchem), and finally,
inhibition of CFTR-specific currents using 10 µM Inh-172 (Selleckchem) added to
the apical chamber. A drop in short-current (ΔIsc), defined as the current inhibited
by Inh-172 after sustained Isc responses were achieved upon stimulation with
forskolin alone or sequentially with ivacaftor, was a quantifiable measurement
assigned to CFTR channel function.

BPN-15477 administration via oral gavage. TgFD9 transgenic mice were treated
by oral gavage once daily for 7 days with BPN-15477 as a suspension in 0.5%
HPMC, 0.1% Tween 80 at a dose of 10, 30, 60, or 100 mg/kg.

The mice used for this study were housed in the animal facility at Rutgers
University, provided with access to food and water ad libitum, and maintained on a
12-h light/dark cycle at a temperature of 70 °F with 30–70% humidity, and all
experimental protocols were approved by the Institutional Animal Care and Use
Committee of the Rutgers University, and were in accordance with NIH guidelines.
For routine genotyping, genomic DNA was prepared from tail biopsies and PCR
was carried out to detect the TgFD9 transgene using the following primers:
forward, 5′-GCCATTGTACTGTTTGCGACT-3′; reverse, 5′-TGAGTGTCACGA
TTCTTTCTGC-3′.

RNA isolation and qRT-PCR analysis of full-length and mutant ELP1 tran-
scripts in mouse tissues. Mice were euthanized and brain, liver, lung, kidney,
heart, and skin tissues were removed and snap-frozen in liquid nitrogen. Tissues
were homogenized in ice-cold QIAzol Lysis Reagent (Qiagen), using Qiagen Tis-
sueLyser II (Qiagen). Total RNA was extracted using the QIAzol reagent procedure
provided by the manufacturer. The yield, purity, and quality of the total RNA for
each sample were determined using a Nanodrop ND-1000 spectrophotometer.
Full-length and mutant ELP1 mRNA expression was quantified by quantitative
real-time PCR (qRT-PCR) analysis using CFX384 Touch Real-Time PCR Detection
System (BioRad). Reverse transcription and qPCR were carried out using One Step
RT-qPCR (BioRad) according to the manufacturer’s recommendations. The
mRNA levels of full-length ELP1, mutant Δ20 ELP1, and GAPDH were quantified
using Taqman-based RT-qPCR with a cDNA equivalent of 25 ng of starting RNA
in a 20-μl reaction. To amplify the full-length ELP1 isoform, FL ELP1 primers
forward, 5′-GAGCCCTGGTTTTAGCTCAG-3′; reverse, 5′-CATGCATTCAAATG
CCTCTTT-3′ and FL ELP1 probe 5′-TCGGAAGTGGTTGGACAAACTTATG
TTT-3′ were used. To amplify the mutant (Δ20) ELP1 spliced isoforms, Δ20 ELP1
primers forward, 5′-CACAAAGCTTGTATTACAGACT-3′; reverse, 5′-GAAG
GTTTCCACATTTCCAAG-3′ and Δ20 ELP1 probe 5′-CTCAATCTGATTTAT
GATCATAACCCTAAGGTG-3′ were used to amplify the mutant (Δ20) ELP1
spliced isoforms. The ELP1 forward and reverse primers were each used at a final
concentration of 0.4 μM. The ELP1 probes were used at a final concentration of
0.15 μM. Mouse GAPDH mRNA was amplified using 20X gene expression PCR
assay (Life Technologies, Inc.). RT-qPCR was carried out at the following tem-
peratures for indicated times: Step 1: 48 °C (15 min); Step 2: 95 °C (15 min); Step 3:
95 °C (15 s); Step 4: 60 °C (1 min); Steps 3 and 4 were repeated for 39 cycles. The Ct
values for each mRNA were converted to mRNA abundance using actual PCR
efficiencies. ELP1 FL and Δ20 mRNAs were normalized to GAPDH and vehicle
controls and plotted as fold change compared to vehicle treatment. Data were
analyzed using the SDS software.

Homogeneous time-resolved fluorescence (HTRF) assay for ELP1 protein
quantification in mouse tissues. Tissue samples were collected, snap-frozen in
liquid nitrogen, weighed, and homogenized on the TissueLyzer II (Qiagen) in RIPA

buffer (Tris-HCl 50 mM, pH 7.4; NaCl 150 mM; NP-40 1%; sodium deoxycholate
0.5%; SDS 0.1%) containing a cocktail of protease inhibitors (Roche) at a tissue
weight to RIPA buffer volume of 50 mg/mL. The samples were then centrifuged for
20 min at 14,000 × g in a microcentrifuge. The homogenates were transferred to a
96-well plate and were diluted in RIPA buffer to ~1 mg/mL for ELP1-HTRF and
~0.5 mg/mL for total protein measurement using the BCA protein assay (Pierce).
Samples were run in duplicate and averaged. For the ELP1-HTRF assay, 35 μL of
tissue homogenate were transferred to a 384-well plate containing 5 μL of the
antibody solution (1:50 dilution of anti-ELP1 D2 and anti-ELP1 cryptate from
Cisbio). The plate was incubated overnight at room temperature. Fluorescence was
measured at 665 and 620 nm on an EnVision multilabel plate reader (Perkin
Elmer). Total protein content was quantified in each tissue homogenate using the
BCA assay according to the manufacturer’s protocol. The total protein normalized
change in ELP1 protein signal for BPN-15477 and vehicle-treated tissue sample
was calculated as ratio of the signal in the presence of the test compound over the
signal in the absence of the test compound (vehicle control).

RNASeq experiment. Six different human fibroblast cell lines from healthy
individuals were obtained from Coriell Institute (Supplementary Table 1) and
cultured in D-MEM supplemented with 10% FBS and 1% penicillin/streptomycin.
Cells were counted and plated in order to achieve semi-confluence after 8 days.
Twenty-four hours after plating, the medium was changed and cells were treated
with BPN-15477 or DMSO to a final concentration of 30 µM and 0.5%, respec-
tively. DMSO was used as vehicle and the concentration of BPN-15477 was chosen
based on our previous studies, since at this concentration BPN-15477 induces
robust splicing changes and ELP1 protein increase. The medium was changed after
3 days. These conditions have been previously established in our laboratory and the
time points chosen to maximize differential protein expression. After seven days of
treatment, cells were collected, and RNA was extracted using the QIAzol Reagent
following the manufacturer’s instructions. RNASeq libraries were prepared by the
Genomic and Technology Core (GTC) at MGH using strand-specific dUTP
method83. RNA sample quality (based on RNA Integrity Number, or RIN) and
quantity were determined using the Agilent 2200 TapeStation and between 100 and
1000 ng of total RNA was used for library preparation. Each RNA sample was
spiked with 1 µl of diluted (1:100) External RNA Controls Consortium (ERCC)
RNA Spike-In Mix (4456740, ThermoFisher Scientific) alternating between mix 1
and mix 2 for each well in the batch. Samples were then enriched for mRNA using
polyA capture, followed by stranded reverse transcription and chemical shearing to
make appropriate stranded cDNA inserts. Libraries were finished by adding Y-
adapters, with sample-specific barcodes, followed by between 10 and 15 rounds of
PCR amplification. Libraries were evaluated for final concentration and size dis-
tribution by Agilent 2200 TapeStation and/or qPCR, using Library Quantification
Kit (KK4854, Kapa Biosystems), and multiplexed by pooling equimolar amounts of
each library prior to sequencing. Pooled libraries were 50 base pair paired-end
sequenced on Illumina HiSeq 2500 across multiple lanes. Real-time image analysis
and base calling were performed on the HiSeq 2500 instrument using HiSeq
Sequencing Control Software (HCS) and FASTQ files demultiplexed using
CASAVA software version 1.8. RNASeq reads were mapped to the human genome
Ensembl GRCh37 by STAR v2.5.2a allowing 5% mismatch84. Exon triplet index
was built according to transcriptome Ensembl GRCh37 version 75. Reads spliced at
each exon triplet splice junction was calculated by STAR on the fly.

Differential splicing analysis. For each exon triplet in a certain biological repli-
cate, ψ was calculated according to Fig. 2a as ψ= 0.5 * (R1+ R2)/(0.5 * (R1+ R2)+
R3).

The average ψ was calculated for treated and untreated conditions, followed by
the calculation of ψ change. For a certain exon triplet in a certain biological
replicate, a 2 × 2 table was created, where the four cells of the table represent
number of reads supporting middle exon inclusion and skipping before and after
treatment. Thus, for each exon triplet, totally six 2 × 2 tables were created for six
biological replicates. Cochran–Mantel–Haenszel test was applied to test whether
there is an association between treatment and splicing across all replicates (namely
whether the cross-replicate odds ratio is 1 or not). For each exon triplet, a p value of
Cochran–Mantel–Haenszel test was reported. Benjamini–Hochberg false-
discovery-rate (BH FDR) correction was finally applied to p values of all triplets.

CNN model. Our CNN network contains two convolutional layers and one hidden
layer (Supplementary Fig. 2a) and it was trained using Basset framework41. The
training set consists of 178 inclusion-responded, 476 exclusion-responded, and 268
unchanged exon triplets. The validation sets consist of 51 inclusion-responded, 136
exclusion-responded and 76 unchanged exon triplets. The test set consists of 25
inclusion-responded, 68 exclusion-responded, and 38 unchanged exon triplets. The
above three sets were assigned randomly in Python using seed of 122. For each
exon-triplet, the sequences from UI1, I1X, XI2, and I2D, each of which consisted of
25 bp of exonic sequence and 75 bp of intronic sequence, are concatenated and
then one-hot coded into an input matrix with size of 4 × 400. The first round of
convolution is applied with fifty 4 × 5 weight matrices, converting the input matrix
into a 50 × 396 convoluted matrix, in which each row represents the convolution of
one weight matrix. Then the convoluted matrix is nonlinearly transformed by
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rectified linear unit (ReLU) function and max pool stage takes the maximum of two
adjacent positions of each row, shrinking the output matrix to a size of 50 × 198.
Then the second round of convolution applies fifty 4 × 2 weight matrices, followed
by the same ReLU transformation and max pool of the first round. The output is
converted to 1 × 500 matrix to initiate the hidden layer, where a fully connected
network is built with 90% dropout rate. The output from the hidden layer is ReLU
transformed again and is then linearly transformed into a vector of three values,
representing three different treatment responses. The final sigmoid nonlinearity
maps each element in the vector to a value between 0 and 1, considering the
probability of drug responsiveness. In each epoch of training, average of area-
under-curve (AUC) was measured on the validation set across the prediction of
three treatment responses. The training and validation loss in terms of binary
cross-entropy were measured on the training set and validation set, respectively.
The training process stopped if there is no improvement of the average of AUC in
10 consecutive epochs. In this study, we stopped at 12th epoch to avoid overfitting
(Supplementary Fig. 2b).

Evaluation model performance transcriptome-wide. To examine the model
performance on human transcriptome, all exon triplets whose PSI was between
0.01 and 0.99 either before or after treatment were recruited. The “true inclusion
responding” group was defined triplets with PSI changes ≥0.01 after treatment
while the “true exclusion responding” group was defined as triplets with PSI
changes ≤−0.01 after treatment. The remaining ones were considered as “true
unchanged” group. The CNN model was then applied on these triplets and ROC-
AUC and PR-AUC were calculated respectively.

Random initialization. The initial parameters were generated from the random
selection of 1000 different seeds. Each set of these initial parameter sets was used to
train a CNN model of the same structure. The training, validation, and test rules
were the same as our original model. By doing so, 1000 random CNN models were
trained together with the original one in this study. For each model, AUC for each
class was calculated.

Examination of motif contribution. To examine motif contribution in classifica-
tion, the test set was used as model input. For each motif’s contribution to be
measured, its total output of the first convolutional layer was manually set to zero,
mimicking the situation where that motif had not been found. The model was then
taken forward without tuning other parameters and the new AUC of each class was
calculated. The contribution of that motif was measured as the difference between
the new AUC and the original AUC of each class. All motifs were investigated in
this way in turn. A motif whose contribution is more than 0 in any class is
considered a true identified motif. A motif whose contribution is no less than 0.05
in any class is considered a top contributor in drug response prediction.

Analysis of positional importance. To examine each motif contribution in
classification, the test set was used as model input. We directly investigate the
positional activation of the first layer of each motif. For each motif, we averaged the
first layer activation of the same position across all sequences. Then we trans-
formed the positional average activations of each motif to their z-scores.

In silico saturation mutagenesis. For a given input sequence, each position was
mutated in silico to the other three alternative nucleotides. The loss of the model
using mutated sequences was calculated and compared to the loss derived from the
original sequence. The maximum change to the loss at each position was recorded.
Nucleotides were drawn proportionally to the change of loss, beyond a minimum
height of 0.25.

Standardized probability from prediction. To determine the final drug response
(inclusion, exclusion, or unchanged) from the prediction, the raw prediction score
from the model was standardized. For each class, a cutoff representing 95% spe-
cificity of that class was identified on the validation set. The intermediate score of
each class was calculated as the raw prediction score divided by the cutoff of that
class. The standardized probability for each class was then calculated as the
intermediate score divided by the sum of intermediate scores of three classes.

k-mer enrichment analysis. The sequences at −3 to +7 bp of the 5′ splice sites of
the middle exons for inclusion, exclusion, and unchanged exon triplets were extracted.
For each class, 5-mer enrichment was estimated against the other two classes using
Discriminative Regular Expression Motif Elicitation (DREME) from THE MEME
Suite with the parameter “-p, -n, -dna -e 0.05 and -k 5”85. The position probability
matrix (PPM) of each motif derived from the 5-mer analysis was correlated to the
PPM of each motif derived from the CNN model, using Pearson correlation.

Splicing strength analysis. Splice strength was measured by maximum entropy
model55. As described in the original study, the measurement in this paper takes
the short sequence of 9 and 23 bp flanking splice junctions, depending on whether
it is 5′ or 3′ side.

Candidate selection for minigene validation. To validate whether the CNN
model correctly predicts BPN-15477 treatment response of mutated exon triplets,
the following rules were applied to select suitable exon triplet: (1) exon triplets with
a total length, including introns, <1.5 kb suitable for cloning; (2) exon triplets
whose splicing changes were detectable in fibroblast RNASeq after BPN-15477
treatment, so that their drug responses could be used as positive control for the
mutated minigenes; (3) the minigene recapitulates the same splicing change
measured in the fibroblast by RNASeq to guarantee that the splicing process is
intact in the minigene.

Minigene generation. Wild-type and mutant double-stranded DNA (dsDNA)
fragments, selected based on low nucleotide length and exon-skipping probability,
were ordered through GENEWIZ (FragmentGENE). Adenosine was enzymatically
attached to DNA fragment 3′ ends with Taq Polymerase in the presence of 200 nM
dATP and 2mM MgCl2 at 70 °C for 30 min. Fragments were ligated into linearized
pcDNA™3.1/V5-His TOPO® TA plasmid (K480001 ThermoFisher Scientific)
according to manufacturer’s instructions. After colony selection and sequence
confirmation, each plasmid was finally purified using MIDIprep kit (740410,
NucleoBond® Xtra Midi, Takara, Mountain View, CA). Concentrations were
determined using nanodrop spectrometer.

SpliceAI prediction on ClinVar pathogenic mutations. The VCF file recording
ClinVar (version 20190325) mutations was downloaded. The pathogenic/likely
pathogenic mutations were extracted and fed to SpliceAI (https://github.com/
illumina/SpliceAI). In the prediction from SpliceAI, any mutation with any Spli-
ceAI score no less than 0.2 was considered alter splicing. Therefore, such mutation,
together with its influenced splice junction (ISJ) and SpliceAI score were recorded.

Rescue definition and prediction. For an exon triplet, the coordinates of the two
domains of the middle exon were compared to those ISJs discovered by SpliceAI. If
either of the domain coordinates were identical to that of an ISJ and its SpliceAI
score indicated a splicing gain, the exon triplet was considered with promoted exon
inclusion under that corresponding mutation. If the coordinates of 5′ splice site of
the middle exon identical to an ISJ and its SpliceAI score indicated a splicing loss,
the exon triplet was considered as exon skipping under that corresponding
mutation.

Three kinds of rescue were considered: (1) if a mutated exon triplet was
predicted (by SpliceAI) to cause exon skipping and it was predicted (by our CNN
model) to have an inclusion response after BPN-15477 treatment; (2) if a mutated
exon triplet was predicated (by SpliceAI) to cause promoted exon inclusion and it
was predicted (by our CNN model) to have an exclusion response after BPN-15477
treatment; and (3) if a mutated exon triplet generated a pre-mature termination
codon (PTC) inside middle exon and it was predicted (by our CNN model) to have
an exclusion response after BPN-15477 treatment and its reading frame was not
shifted after skipping the middle exon.

Allele frequency from gnomAD. VCF files for both human exome and genome
sequencing were downloaded from gnomAD (v2.1.1)86,87. The corresponding
ClinVar mutations were located in these VCF files via their SNP IDs. If the short
variant was found only in exome or only in genome sequencing VCF, the reported
minor allele frequency was then used. If a short variant was found in both exome or
in genome sequencing, the maximum value was taken.

Statistical analyses. For differential splicing analysis, Cochran–Mantel–Haenszel
test was applied followed by FDR correction. An FDR < 0.1 and Δψ ≥ 0.1 was
considered as inclusion-response after the treatment (Fig. 2b). Any triplet with
FDR < 0.1 and Δψ ≤−0.1 was considered as exclusion-response after the treatment
(Fig. 2b). Any exon triplet, whose ψ before-treatment range from 0.1 to 0.9 and ψ
change is <0.01, was considered as unchanged-response. For Pearson correlation
(Fig. 2c), the gray zone indicates 95% confident intervals. For splicing strength
comparison (Fig. 3c), the maximum entropy was compared among inclusion,
exclusion, and unchanged groups at each splice junction, using two-tailed Welch’s
t-test. For the boxplots (Fig. 3c), the middle lines inside boxes indicate the medians.
The lower and upper hinges correspond to the first and third quartiles. Each box
extends to 1.5 times inter-quartile range (IQR) from upper and lower hinges,
respectively. Outliers were not shown. For RT-PCR comparison (Figs. 3 and 4),
two-tailed Welch’s t-test was applied. In all plots, the error bars indicate ± standard
deviation (SD) from mean values. In all plots, the significance levels were marked
by *p < 0.05, **p < 0.01, and ***p < 0.001.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available in
the GEO database: GSE158947. Other public datasets used in this study: Human genome
Ensembl GRCh37 [http://ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/dna/
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Homo_sapiens.GRCh37.75.dna.primary_assembly.fa.gz], Human transcriptome
Ensembl GRCh37.75 [http://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/
Homo_sapiens.GRCh37.75.gtf.gz], ClinVar GRCh37 VCF version 20190325 [https://ftp.
ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/archive_2.0/2019/clinvar_20190325.vcf.gz],
and gnomAD v2.11 GRCh37 VCF [https://gnomad.broadinstitute.org/downloads#v2-
variants]. Any other relevant data are available from the authors upon reasonable
request. Source data are provided with this paper.

Code availability
Source code to reproduce the results88 in the paper is available on GitHub [https://github.
com/talkowski-lab/SMC_CNN_Model].
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