
Optimizing drug inhibition of IgE-mediated
anaphylaxis in mice
Suzanne C. Morris, PhD,a Charles Perkins, BS,b Crystal Potter, BS,a David Parsons, BS,a Richard Schuman, PhD,d

Marat V. Khodoun, PhD,a Unni Samavedam, PhD,a Richard Strait, MD,c and Fred D. Finkelman, MDa,b Cincinnati, Ohio;

and Rockville, Md
Background: Administering allergens in increasing doses can
temporarily suppress IgE-mediated allergy and anaphylaxis by
desensitizing mast cells and basophils; however, allergen
administration during desensitization therapy can itself induce
allergic responses. Several small molecule drugs and
nutraceuticals have been used clinically and experimentally to
suppress these allergic responses.
Objectives: This study sought to optimize drug inhibition of
IgE-mediated anaphylaxis.
Methods: Several agents were tested individually and in
combination for ability to suppress IgE-mediated anaphylaxis in
conventional mice, FcεRIa-humanized mice, and reconstituted
immunodeficient mice that have human mast cells and
basophils. Hypothermia was the readout for anaphylaxis;
therapeutic efficacy was measured by degree of inhibition of
hypothermia. Serum mouse mast cell protease 1 level was used
to measure extent of mast cell degranulation.
Results: Histamine receptor 1 (HR1) antagonists, b-adrenergic
agonists, and a spleen tyrosine kinase (Syk) inhibitor were best
at individually inhibiting IgE-mediated anaphylaxis. A Bruton’s
tyrosine kinase (BTK) inhibitor, administered alone, only
inhibited hypothermia when FcεRI signaling was suboptimal.
Combinations of these agents could completely or nearly
completely inhibit IgE-mediated hypothermia in these models.
Both Syk and BTK inhibition decreased mast cell
degranulation, but only Syk inhibition also blocked
desensitization. Many other agents that are used clinically and
experimentally had little or no beneficial effect.
Conclusions: Combinations of an HR1 antagonist, a
b-adrenergic agonist, and a Syk or a BTK inhibitor protect best
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against IgE-mediated anaphylaxis, while an HR1 antagonist
plus a b-adrenergic agonist 6 a BTK antagonist is optimal for
inhibiting IgE-mediated anaphylaxis without suppressing
desensitization. (J Allergy Clin Immunol 2021;nnn:nnn-nnn.)
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The considerable and increasing prevalence of allergic disor-
ders1-5 has served as an impetus for the development of novel
therapies. Several of these therapeutic approaches involve desen-
sitization, the concept that exposure to allergen doses that are
insufficient to cause symptoms temporarily increases the allergen
dose required to elicit symptoms.6-12 For IgE-dependent allergy,
desensitization is predominantly allergen-specific8,13-16 and re-
sults from reversible allergen-induced changes in IgE/FcεRI
expression,17,18 actin conformation,19 and signaling15,18,19 on
mast cells and basophils. Unlike true tolerance, allergen sensi-
tivity recurs unless allergen exposure is repeated at frequent
intervals.7,9,11,19-22 Despite this limitation, desensitization with
escalating doses of allergen, administered intravenously, orally,
sublingually, or transcutaneously, is currently being used effec-
tively to treat drug and food allergy.7,23-29

Allergen desensitization, however, whether the relatively slow
approach that is most frequently used to treat food allergy7 or the
rapid approach used to treat drug allergy,25 is not without risk. Pa-
tients undergoing this therapy, like patients being treated with
more prolonged courses of subcutaneous allergen that can induce
more persistent tolerance by inducing blocking IgG antibodies
and promoting regulatory T- and B-cell responses, can develop
local or systemic adverse responses when the therapy induces
excessive mast cell or basophil activation.7,12,23,27,29-35 To mini-
mize these adverse responses during rapid desensitization for
food allergy, it is common to treat patients prophylactically
with corticosteroids, antihistamines that suppress histamine re-
ceptor 1 (HR1) and HR2, and leukotriene or leukotriene receptor
antagonists.36-42 With some exceptions,42 however, the choice of
these drugs is based more on theoretical considerations than on
experimental results that demonstrate efficacy.

To optimize such prophylactic drug therapy during desensitiza-
tion, we have used conventional and humanized mouse models to
test the ability of different agents to protect against IgE-mediated
anaphylaxis. Our results demonstrate additive or synergistic pro-
tective effects of HR1, but not HR2 antagonists, b-adrenergic ag-
onists (but not epinephrine), a Bruton’s tyrosine kinase (BTK)
inhibitor, and a spleen tyrosine kinase (Syk) inhibitor (although
the Syk inhibitor suppresses desensitization as well as anaphy-
laxis); in contrast, several other agents that have been described
to protect against anaphylaxis had little or no protective effect
against the development of hypothermia in our experiments.
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Abbreviations used
15.1: M
ouse IgG1 anti-human FcεRIamAb–secreting hybridoma

cells
BTK: B
ruton’s tyrosine kinase
DMSO: D
imethyl sulfoxide
EM-95: R
at IgG2a anti-mouse IgE mAb
HR1: H
istamine receptor 1
IP: In
traperitoneal
IV: In
travenous
MMCP1: M
ouse mast cell protease 1
NSGS: N
OD/LtSz-SCID IL-2RG2/2SGM3 (mice)
OVA: O
valbumin
PI3K: P
hosphoinositide 3-kinase
SC: S
ubcutaneous
Syk: S
pleen tyrosine kinase
TNP: T
rinitrophenyl
METHODS

Mice
BALB/c and C57BL/6 mice were either purchased from Charles River

Laboratories (Wilmington, Mass) or bred in-house. Human FcεRIa trans-

genic, mouse FcεRIa-deficient mice on a BALB/c background43 were a gift

from Jean-Pierre Kinet (Cambridge, Mass). NOD/LtSz-SCID IL-

2RG-/-SGM3 (NSGS)44 and NRG-SGM3 mice were obtained from James

Mulloy (Division of Experimental Hematology and Cancer Biology, Cincin-

nati Children’s Hospital Medical Center, Cincinnati, Ohio) and bred

in-house. These mice were reconstituted with red blood cell–depleted, anti-

human CD3 mAb -treated human cord blood cells (mAb OCT-3; BioXCel

Therapeutics, New Haven, Conn) as described by Wunderlich et al.45 Animal

work was approved by the Cincinnati Children’s Hospital Research Founda-

tion Institutional Animal Care and Use Committee and was conducted in

accord with the National Institutes of Health’s Guide for the Care and Use

of Laboratory Animals.46 Female mice, 8 to 12 weeks old, were used for ex-

periments unless otherwise noted. Cages of mice were randomly assigned to

different groups without a specific randomization protocol, with the exception

that mice in different groups were age- and sex-matched.
Reagents
Rat IgG2a anti-mouse IgE mAb–secreting hybridoma cells (EM-95)47

were a gift of Zelig Eshhar (Weizmann Institute, Rehovot, Israel). Mouse

IgEaTNP (trinitrophenyl) mAb–secreting hybridoma cells48 were pur-

chased from the ATCC (Rockville, Md). Mouse IgG1 anti-human FcεRIa

mAb–secreting hybridoma cells (15.1)49 were a gift of Jean-Pierre Kinet.

Mouse IgG1 anti-human IgD mAb–secreting hybridoma cells were a gift

of John Kearny (Birmingham, Ala). Mouse IgG1 anti-hen egg lysozyme

mAb secreting hybridoma cells were a gift of S. Smith-Gill (Bethesda,

Md).50 We purchased mouse IgG2b anti-human FcεRIa mAb AER-37

(also called CRA-1) (BioLegend, San Diego, Calif), doxepin hydrochlo-

ride (Sigma, St Louis, Mo), triprolidine hydrochloride (Sigma), formoterol

fumarate dihydrate (Sigma), terbutaline sulfate (Akorn Inc, Decatur, Ill),

albuterol sulfate (Sigma), indacaterol maleate (Selleckchem, Houston,

Tex), adrenaline hydrochloride solution–1 mg/mL (Par Pharmaceutical

Cos Ind, Spring Valley, NY), fostamatinib R788 (Selleckchem), imatinib

mesylate (Santa Cruz Biotechnology, Santa Cruz, Calif), idelalisib (also

known as CAL-101, GS-1101) (Selleckchem), and ibrutinib (ChemieTek,

Indianapolis, Ind). TNP-labeled BSA was prepared by dissolving 1 g of

BSA in 5 mL of saline, then adding 500 mL of 1 mol/L NaHCO3 buffer,

pH 9.6. A 200 mg/mL solution of TNP was made by dissolving 500 mL

TNP (picrylsulfonic acid) in 500 mL dimethyl sulfoxide (DMSO). TNP/

DMSO was added to the BSA solution while vortexing, and the resulting

solution was left overnight in the dark at room temperature. The resulting

TNP-BSAwas dialyzed 3 times against saline and stored at 2808C. TNP-
ovalbumin (TNP-OVA) was made as previously described.51 Formoterol

was dissolved in DMSO before dilution in normal saline. Idelalisib was dis-

solved at 30 mg/mL in 30% polyethylene glycol 400/0.5% Tween80/5%

propylene glycol. Table E1 in this article’s Online Repository (available

at www.jacionline.org) summarizes the dose ranges tested, routes of

administration, timing of administration, and vehicles used for the

different agents tested; the same vehicle used to dissolve or suspend an

agent was used as the control for that agent.
Determination of IgE expression by peritoneal mast

cells
IgE staining of peritoneal mast cells (identified as c-kit1 IL-3R1 B2202

high side scatter cells) was determined by flow cytometry.
IL-4C
Mouse recombinant IL-4 (Peprotech, Rocky Hills, NJ) was mixed with

BVD4-1D11.1 rat anti-mouse IL-4mAb (purified from ascites) at a 1:5 weight

ratio and incubated for 2 minutes at room temperature, then diluted to the

desired concentration with 1% autologous mouse serum in PBS.

Measurement of MMCP1 levels
Serum levels ofmousemast cell protease 1 (MMCP1)weremeasured in blood

drawn 3 or 4 hours after challenge with an ELISA kit (eBioscience, Thermo

Fisher Scientific, Waltham, Mass), according to the manufacturer’s protocol.
Anaphylaxis
The severity of anaphylactic shock was assessed by decrease in rectal

temperature, as measured by digital thermometry.52
Passive anaphylaxis model
Mice were sensitized by intravenous (IV) injection of 10 mg of IgE anti-

TNP mAb, then challenged IV 24 hours later with 10 mg of TNP-BSA or

TNP-OVA.

Generation of mouse anti-human FcεRIa mAbs
FcεRIa-deficient mice (BALB/c background) were immunized 3 times

intraperitoneally (IP) at 2-week intervals with 20 mg of the 176 N-terminal

amino acid human FcεRIa ectodomain in 50% alum adjuvant. Once high titers

of mouse IgG1 anti-human FcεRIa were detected by ELISA, the mice were

injected IV with 2 mg of human FcεRIa ectodomain; 2 days later, their sple-

nocytes were fused with a nonsecreting mouse plasmacytoma cell and cloned.

Five mouse IgG1 anti-human FcεRIa ectodomain mAb–secreting clones were

selected by ELISA, followed by flow cytometric evaluation of their ability to

stain peritoneal mast cells from mice that expressed human, but not mouse

FcεRIa and their failure to stain peritoneal mast cells from normal BALB/c

mice. Selected clones, including the clones IE7 and IB10 that are used in

this article, were expanded for mAb generation and grown as ascites in

pristane-primed BALB/c mice. IE7 and IB10mAbs were purified from ascites

by ammonium sulfate fractionation followed by DE-52 chromatography.
Statistics
Differences in temperature and concentrations of MMCP1 were compared

with a 2- or 3-way ANOVA or Kruskal-Wallis test, as appropriate, followed by

Tukey’s honest significant difference test or Mann-Whitney U test, as appro-

priate (GraphPad Prism 7.0; GraphPad Software, La Jolla, Calif). A 1-tailed

test was used to test hypotheses that a given treatment would decrease the tem-

perature drop; otherwise a 2-tailed test was used. For line graphs showing devel-

opment of hypothermia, statistical analysis was performed on the maximum

temperature drops for individual mice. A P value of < .05 was considered sig-

nificant. For all figures, *P < .05; **P < .01; ***P < .001; ****P < .0001.
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RESULTS

Effects of antihistamines
Initial experiments evaluated the ability of single small

molecule inhibitors to suppress anaphylaxis in BALB/c mice
injected IV with 20 mg of EM-95. In a total of 10 experiments,
each of which had 4 to 6 mice per group, 200 mg of HR1 antago-
nist triprolidine, injected IP 1 hour prior to IV EM-95 challenge,
decreased the maximum temperature drop on average from
3.988C 6 0.238C to 2.228C 6 0.258C (mean 6 SEM, 44.9% 6
4.0% suppression), with a typical result shown in Fig 1, A. Doses
of triprolidine <200 mg were less effective than the 200-mg dose,
while doses >200 mg had no additional suppressive
effect; triprolidine injection 37 or 75minutes prior to EM-95 chal-
lengewere equally effective, but triprolidine injected 150minutes
prior to challenge was ineffective (see Fig E1 in this article’s On-
line Repository at www.jacionline.org). An HR1 antagonist that
also suppresses the HR2 (doxepin,53 10 mg/kg), was no more
effective than triprolidine at suppressing IgE-mediated hypother-
mia (Fig 1,B); an H2R antagonist (ranitidine) had no effect (Fig 1,
C) and 25 mg/kg of ketotifen, which is thought to be both an HR1
antagonist and a mast cell stabilizer,54 was considerably less
effective than 200 mg of triprolidine at preventing IgE-mediated
hypothermia (not shown).
Effects of b-adrenergic receptor agonists
Because b-adrenergic receptor agonists have been described to

suppress both mast cell degranulation55,56 and the effects of mast
cell-generated mediators,57,58 we tested the ability of drugs in this
class to suppress IgE-mediated anaphylaxis; these drugs (formo-
terol, terbutaline, albuterol, and indacaterol) indeed dose-
dependently protected against development of hypothermia (Fig
2). In contrast, subcutaneous injection of 2 to 50 mg of epineph-
rine 5 minutes after antigen challenge of mice primed with
antigen-specific IgE failed to prevent hypothermia (see Fig E2
in this article’s Online Repository at www.jacionline.org). IP in-
jection of 2 mg of epinephrine 5 minutes after antigen challenge
also failed to reverse the development of hypothermia and IP in-
jection of 10 or 50 mg of epinephrine was toxic, inducing hypo-
thermia even in mice that received no other treatment (not
shown). In contrast, subcutaneous (SC) injection of 25 mg of
epinephrine 10 minutes prior to anti-IgE mAb challenge signifi-
cantly decreased development of hypothermia, particularly
when results were adjusted to eliminate the hypothermic effects
directly induced by epinephrine (see Fig E3,A in this article’s On-
line Repository at www.jacionline.org).

Because we had evaluated an HR1 antagonist and b-adrenergic
agonists solely as prophylactics (ie, injected prior to anti-IgE
mAb challenge) and epinephrine has some effectiveness as a pro-
phylactic, but not as a therapeutic (injected after anti-IgE mAb
challenge) in our model, we evaluated whether an HR1 antagonist
and/or a b-adrenergic agonist had any efficacy in our model as
therapeutics. Results of this experiment (Fig E3, B) show signif-
icant efficacy, although less than in experiments that used these
drugs prophylactically.
Effects of tyrosine kinase inhibitors
Because the tyrosine kinase Syk is involved in the initiation of

IgE-mediated mast cell activation,59 we also tested the ability of a
Syk inhibitor (fostamatinib), to block IgE-mediated hypothermia.
This drug was consistently effective at a dose of 80mg/kg, but not
at 40mg/kg (typical results shown in Fig 3,A). Unlike triprolidine
andb-adrenergic agonists, fostamatinib suppressed mucosal mast
cell degranulation, as shown by inhibition of serum levels of
MMCP1, a proteolytic enzyme that is released by degranulating
mucosal mast cells60 (Fig 3, B). The BTK inhibitor ibrutinib, at
a single dose of 25 mg/kg, failed to suppress IgE-mediated hypo-
thermia in BALB/c mice, but almost completely suppressed IgE-
mediated hypothermia in huFcεRIamice, whose chimeric FcεRI
is composed of human FcεRIa and mouse FcεRIb and FcεRIg43

and which develop less severe hypothermia and less mast cell
degranulation (lower serum MMCP1) than BALB/c mice in
response to anti-IgE mAb (Fig 3, C andD). Ibrutinib significantly
decreased the anti-IgE mAb–induced MMCP1 response in both
BALB/c and huFcεRIa mice, but fully suppressed this response
only in the huFcεRIa mice (Fig 3, D). In contrast to Syk and
BTK inhibitors, other tyrosine kinase inhibitors by themselves
had little or no suppressive effects on hypothermia or on mast
cell degranulation at doses that inhibit their targets in vivo. These
inhibitors included 5 to 80 mg/kg of the phosphoinositide 3-
kinase (PI3K) P110d inhibitor, idelalisib, and 1.25 mg/kg of the
Abl/Kit inhibitor, imatinib (see Fig E4 in this article’s Online Re-
pository at www.jacionline.org; data not shown).
Lack of effects of additional agents
In addition to these tyrosine kinase antagonists, a large number

of other drugs and agents that have been described to inhibit
anaphylaxis61-71 in mice had little or no effect in our model as sin-
gle agents when used at the concentration, route of administra-
tion, and timing specified in the previously described mouse
studies. These included an HR4 inhibitor (JNJ-777120, 20 mg/
kg), a natural phenol/phytoalexin (resveratrol, 10 mg/kg), a flavo-
noid polyphenol (quercetin, 50 mg/kg), an antioxidant flavanol
(kaempferol, 50 mg/kg), a natural phenol diarylheptanoid (curcu-
min, 50 mg/kg), corticosteroids, a mast cell stabilizer (cromolyn
sodium, a single 300 mg dose), theophylline (5 mg/kg), a 5-
lipoxygenase inhibitor (zileuton, 50 mg/kg dissolved in DMSO
and inoculated by oral gavage 1 hour and 24 hours prior to chal-
lenge), a leukotriene receptor (CysLT1) antagonist, montelukast
(6 mg/kg inoculated subcutaneously 1 hour and 24 hours before
challenge), a leukotriene D4 receptor antagonist (REV 5901,
250 mg IV diluted in a 1:1000 solution of DMSO in saline 15 mi-
nutes prior to challenge), and a platelet-activating factor antago-
nist (ABT-491, 2 mg IV). In addition to these, serotonin receptor
(5-HT1/2/2a/7) antagonists (metergoline (200mg IP in 1% carboxy-
methylcellulose 30 minutes prior to challenge) and ketanserin (60
mg IP 30 minutes prior to challenge) were also shown by us pre-
viously to fail to inhibit murine IgE-mediated anaphylaxis.51 The
effects of all of the different agents tested are summarized in
Table E2 in this article’s Online Repository (available at www.
jacionline.org).
Additive or synergistic suppressive effects of an

antihistamine, b-adrenergic agonists, and a Syk

inhibitor
On finding that antihistamines, b-adrenergic agonists, and a

Syk inhibitor were the most effective individual inhibitors of
IgE-mediated murine anaphylaxis, studies were performed to
determine (1) whether combinations of these agents could

http://www.jacionline.org
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FIG 1. HR1 antagonist antihistamines partially protect against anti-IgE

mAb–induced hypothermia. (A, B) BALB/c mice (n 5 6 per group) were in-

jected IP with 200 mg of triprolidine or vehicle, followed 1 hour later by IV

injection of saline (no treatment) or 20 mg of anti-mouse IgE mAb and fol-

lowed for 60 minutes for development of hypothermia. (B) Doxepin (10

mg/kg injected IP 5 minutes before challenge) and triprolidine protect

BALB/c mice (n 5 6 per group) against anti-IgE mAb–induced hypothermia

to the same extent. (C) BALB/c mice (n 5 5-6 per group) were injected IP

with saline, 200 mg of triprolidine, and/or 1 mg/kg of ranitidine, followed

1 hour later by IV injection of saline (no treatment) or 20 mg of anti-

mouse IgE mAb and followed for 60 minutes for development of
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additively or synergistically suppress anaphylaxis, and (2)
whether the use of combinations would allow use of lower doses
of a b-adrenergic agonist and a Syk inhibitor, which are more
likely than an H1R blocker to have adverse effects. Results of
these studies showed additive or synergistic effects of any 2 of
these agents (Fig 4). In some experiments, the use of all 3 agents
almost totally blocked anaphylaxis (Fig 4,B). A similar result was
observed in huFcεRIa mice that were challenged with an acti-
vating anti-human FcεRIa mAb (see Fig E5, A in this article’s
Online Repository at www.jacionline.org). In other experiments,
3 agents were no more effective than 2 (Fig 4,D and E). This was
true even when mice were pretreated with a long-acting formula-
tion of IL-472 to increase anaphylaxis severity73 (Fig 4, D).
Although these studies were all performed with female BALB/c
mice, the combination of triprolidine and albuterol was also
more effective than either drug alone at suppressing IgE-
mediated hypothermia in BALB/c male and C57Bl/6 female
mice (see Fig E6 in this article’s Online Repository at www.
jacionline.org).
Additive and synergistic effects of different tyrosine

kinase inhibitors
Because Syk, PI3K, and BTK are all involved in FcεRI-medi-

ated mast cell signaling74 and Kit also promotes mast cell activa-
tion,75 we hypothesized that PI3K, BTK, and Kit inhibitors might
act synergistically with a Syk inhibitor (fostamatinib) to suppress
FcεRI-mediated mast cell activation, even if they had little or no
effect by themselves. This appeared to be the case for each of
these inhibitors (Fig 5, A-C), although the effects of the combina-
tion of fostamatinib and imatinib did not reach statistical signifi-
cance (P5 .07) and the combination of fostamatinib with another
tyrosine kinase antagonist sometimes caused toxicity (reversible
hypothermia) in the absence of FcεRI crosslinking (Fig 5, B;
data not shown).

The ability of PI3K, BTK, and Kit inhibitors to enhance Syk
inhibitor suppression of IgE-mediated anaphylaxis, even though
they had little effect on their own in BALB/c mice, led us to
evaluate whether the same kinase inhibitors would enhance
suppression by an HR1 antagonistic or b-adrenergic receptor
agonist in these mice. Results of these studies demonstrated
increased inhibition when the BTK antagonist ibrutinib was com-
bined with either triprolidine or albuterol, as compared to tripro-
lidine or albuterol alone, while adding imatinib or idelalisib to
triprolidine or albuterol had much less of an effect (Fig 5, D-F).
The effects of all tested combinations of agents on IgE-
mediated anaphylaxis are summarized in Table E3 in this article’s
Online Repository (available at www.jacionline.org).
Triprolidine, indacaterol, and fostamatinib suppress

IgE-mediated anaphylaxis in mice that have human

mast cells and basophils
Because human mast cells and basophils have somewhat

different properties than the same cell types in mice,21,76-78 we
hypothermia. Ranitidine did not significantly suppress IgE-mediated hypo-

thermia; triprolidine 1 ranitidine did not suppress hypothermia signifi-

cantly more than triprolidine alone did. Statistical tests: Kruskal-Wallis

followed by Mann-Whitney U test for all panels. **P < .01. ns, Not

significant.
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FIG 2. b-adrenergic agonists partially protect against anti-IgEmAb–induced hypothermia. BALB/cmice (n5
4-6 per group) were pretreated with or without formoterol (A), terbutaline (B), albuterol (C), or indacaterol

(D); challenged IV with 20 mg of anti-mouse IgE mAb; and followed for 60 minutes for development of hy-

pothermia. Formoterol was injected IV 37minutes prior to challenge; terbutaline was injected SC 30minutes

prior to challenge; albuterol was injected IP 30 minutes prior to challenge; indacaterol was injected IV 30

minutes prior to challenge. Statistical tests: Kruskal-Wallis followed by Mann-Whitney U test for all panels.

**P < .01.
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used immune-deficient, recombinant human (rehu)IL-3–, re-
huGM-CSF–, and rehu stem cell factor (SCF)-producing NSGS
mice that had been reconstituted for 2 to 3 months with T-cell–
depleted human cord blood cells to determine whether antihista-
mine/b-adrenergic agonist/Syk inhibitor treatment could block
IgE-mediated anaphylaxis that is mediated by human mast cells
and basophils. These mice provide a particularly sensitive tool
for studying IgE-mediated anaphylaxis, because they develop
large numbers of human mast cells (along with smaller numbers
of basophils); both cell types in these mice have abnormally high
responsiveness to FcεRI crosslinking because of their high levels
of 3 mast cell–stimulating cytokines,79,80 which also increase
responsiveness to mast cell–produced mediators (Khodoun and
Finkelman, unpublished data, 2019). Indeed, IV injection of a
relatively high dose of anti-IgEmAb (Fig 6, A), antigen following
priming with antigen-specific IgE (Fig 6, B), or anti-huFcεRIa
mAb (Fig 6, C) typically kills these mice in <30 minutes, while
injection of these mice with 100 to 500 ng of the same anti-
FcεRIa mAb typically causes a 48C to 68C temperature drop
(Fig E5, B). Pretreatment with the combination of triprolidine/in-
dacaterol/fostamatinib usually prevented death (Fig 6, A-C) and
substantially inhibited the development of hypothermia in mice
injected with antigen or the higher doses of anti-IgE mAb. Hypo-
thermia was almost completely prevented by the combinations of
triprolidine/indacaterol/fostamatinib or triprolidine/indacaterol
when mice were challenged IV with the low dose of anti- FcεRIa
mAb (Fig E5, B).
Fostamatinib, but not ibrutinib, suppresses mast

cell/basophil desensitization
Although 80mg/kg of fostamatinib suppresses anaphylaxis and

40 mg/kg of this Syk inhibitor enhances the abilities of
triprolidine and b-adrenergic agonists to suppress anaphylaxis,
fostamatinib treatment was associated in some anti-FcεRIa or
anti-IgE mAb–challenged mice with a late decrease in
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temperature that occurred once the effects of this drug had worn
off (Fig 6, C). Because this late exacerbation of hypothermia was
not seen in mice that did not receive a Syk inhibitor (data not
shown), this result raised the possibility that Syk inhibition might
interfere with FcεRI-mediated mast cell desensitization. To eval-
uate this possibility, huFcεRIa transgenic mice were sensitized
with IgE anti-TNP mAb, then treated the next day with anti-
huFcεRIa mAb or isotype-control mAb in the presence or
absence of 40mg/kg of fostamatinib. These micewere challenged
4 hours after that with 10 mg of TNP-BSA and evaluated for the
development of hypothermia (Fig 7, A). Hypothermia failed to
develop in the anti-FcεRIa mAb–treated mice that had not
received fostamatinib, but hypothermia was only partially sup-
pressed in those that had received this drug (Fig 7, B). Fostamati-
nib had no significant effect on the ~7-fold decrease in mast cell
IgE expression that was caused by anti-FcεRIa mAb treatment
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FIG 5. Synergistic inhibition of IgE-mediated anaphylaxis by tyrosine kinase inhibitors. BALB/c mice (n5 4-
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(Fig 7,C). Thus, Syk inhibition appears to inhibit mast cell desen-
sitization in vivo. In contrast, inhibition of BTK, which is also
involved in induction of mast cell degranulation, had little or no
suppressive effect on IgE-mediated anaphylaxis (hypothermia)
in our model (Fig 7, D and E). (The difference in timing between
the fostamatinib and ibrutinib studies was necessary to allow the
serum ibrutinib concentration to decrease to a level that would no
longer directly suppress anaphylaxis in huFcεRIa mice.)
DISCUSSION
The considerable and increasing prevalence of IgE-mediated

allergic disorders, including drug allergy, food allergy, venom
allergy, and chronic urticaria, has encouraged the development of
safe and effective therapies for these disorders. Rapid desensiti-
zation is a therapeutic approach that has been increasingly used,
predominantly to treat drug allergy, but also to some extent as part
of strategy to treat food allergy. In this approach, patients with
allergy are administered rapidly increasing quantities of the
relevant allergen or allergen-containing substance, starting with a
dose that is insufficient to elicit clinically apparent signs,
symptoms, and basophil/mast cell degranulation, and ending
with a dose that is hopefully sufficient to temporarily desensitize
these cells to exposure to a fully therapeutic dose of a drug or to
typically ingested quantities of a food. We have extended this
approach by demonstrating that rapid desensitization can be
applied in a ‘‘polyclonal,’’ antigen-nonspecific way in mice by
treating them with serially increasing doses of a mAb to the
IgE-binding chain of the basophil and mast cell high affinity
IgE receptor, FcεRIa.18,81,82 In addition to its ability to desensi-
tize to all IgE-mediated anaphylactic reactions, this approach
has safety and efficacy advantages over desensitization with anti-
gen, an advantage that most likely reflects the lack of preexisting
IgG antibodies to anti-FcεRIa mAb and the longer in vivo half-
life of IgG antibodies than most allergens. At least 2 mechanisms
are involved in mast cell desensitization in our model: suppres-
sion of FcεRI signaling and depletion of mast cell/basophil IgE
and FcεRI.18

The use of rapid desensitization with either antigen or anti-
FcεRIa mAb is not without risk, because excessive crosslinking
of FcεRI by either agent can cause the same IgE-mediated reac-
tions that the approach is designed to prevent. Indeed, such reac-
tions have occurred frequently during rapid desensitization for
drug allergy and can be sufficiently severe to require epinephrine
injection.83,84 For this reason, allergy researchers, particularly the
group headed by Marianna Castells, have used combinations of
drugs to suppress allergic reactions that can occur during rapid
drug desensitization.15,36-39,42 These drugs, which include HR1-
and HR2-specific antihistamines, aspirin, the leukotriene antago-
nist montelukast, adrenocorticosteroids, and opioids, provide
some protection against frequently encountered adverse reac-
tions, including pruritis, urticaria, bronchospasm, angioedema,
flushing, and fever. However, there has not been a systematic eval-
uation of potentially protective agents in an animal model of
vehicle or a combination of 80 mg/kg of fostamatinib, 2.5 mg/kg of indaca-

terol, and 200 mg of triprolidine and challenged IV with 10 mg of TNP-OVA;

or (C) pretreated with vehicle or 40 mg/kg of fostamatinib, 2.5 mg/kg of

indacaterol, and 200 mg of triprolidine and challenged IV with 50 mg of an

anti-huFcεRIa mAb. Statistical tests: Fisher’s exact test for comparison of

mortality for all panels. *P < .05.



34

35

36

37

38

39

Te
m

pe
ra

tu
re

 (°
C

)

0 20 40 60

Time (minutes)

Anti-Fc RI  mAb + Fostamatinib
Isotype Control mAb + Fostamatinib
Anti-Fc RI  mAb + Vehicle
Isotype Control mAb + Vehicle

A

B
0 100 200 300

Isotype Control mAb + Buffer
Isotype Control mAb + Fostamatinib

Anti-Fc RI  mAb + Buffer
Anti-Fc RI  mAb + Fostamatinib

IgE MFI

n.s.

IgE anti-TNP mAb, 10 μg

19.5 hrs 0.5 hrs Follow temperature 1 hr

C

D
IgE anti-TNP mAb, 10 μg +
Ibrutinib, 25 mg/kg or vehicle

Follow temperature 1 hr

**
**** ns

E
Anti-Fc  mAb + Ibrutinib
Isotype Control mAb + Ibrutinib
Anti-Fc RI  mAb + Vehicle
Isotype Control mAb + Vehicle

0 20 40 60

34

35

36

37

38

Time (minutes)

Te
m

pe
ra

tu
re

 (°
C)**

****
****

**
**

FIG 7. Fostamatinib inhibits mast cells and/or basophil desensitization. (A, B) In 2 pooled experiments, a to-
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anaphylaxis that could be thoroughly studied and rigorously
controlled, and there have not been any reports of drug prophy-
laxis against allergic reactions to anti-FcεRIa mAbs. Conse-
quently, we undertook the mouse studies that are described in
this article.

Using (1) conventional mice and humanized mice that express
human FcεRIa onmousemast cells and basophils or that have hu-
man mast cells and basophils; (2) high dose anti-IgE mAbs, anti-
FcεRIa mAbs, or IgE anti-TNP mAbs followed by TNP-OVA or
TNP-BSA to trigger anaphylaxis; and (3) shock (measured as hy-
pothermia) as a readout for anaphylaxis, we identified agents that
were effective by themselves and in combination, agents that
were effective only in combination, and agents for which we
found no evidence of efficacy. The first, most efficacious group,
included HR1-specific antihistamines, b-adrenergic agonists,
and an inhibitor of the tyrosine kinase, Syk. In addition to their
abilities to partially suppress anaphylaxis by themselves, our re-
sults demonstrate additive and synergistic effects that completely
or nearly completely prevent hypothermia. This most likely re-
flects the different mechanisms of action of these 3 therapeutics:
blocking the effect of mast cell/basophil-released histamine on
HR1; b-adrenergic suppression of increases in vascular perme-
ability through direct effects on vascular endothelial cells;85 and
inhibition of mast cell degranulation by blocking a tyrosine ki-
nase, Syk, that has a critical role in this process (notably, the
Syk inhibitor is the only one of these agents that suppresses
mast cell degranulation, as evaluated by serum MMCP1 levels).
Importantly, a considerable increase in efficacy was seen when
any 2 agents were combined and treatment with drug combina-
tions allowed the use of lower doses of individual drugs, which
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should decrease drug toxicity. Although anHR1 antagonist andb-
adrenergic agonist had some ability to decrease the loss in core
body temperature when injected 5 minutes after anti-IgE mAb
challenge, this effect was considerably less than when these drugs
were used prophylactically.

Agents in the second group had little or no efficacy by
themselves at the doses used (higher doses were toxic) in
BALB/c mice, but they amplified the protective effect of Syk
inhibition. These agents include 3 tyrosine kinase antagonists:
imatinib, which suppresses Kit (required for mast cell develop-
ment and survival86), idelalisib, which suppresses P110d (the
d isoform of PI3K, which is involved in FcεRI signaling87,88),
and ibrutinib, which suppresses BTK (also important in FcεRI
signaling89). Thus, the combined use of tyrosine kinase inhibitors
that suppress FcεRI signaling at different stages appears to syner-
gistically inhibit FcεRI-mediated mast cell degranulation, just as
suppressing different steps in anaphylaxis pathogenesis (mast cell
degranulation, histamine binding to the HR1, mediator-induced
increases in vascular permeability) additively or synergistically
suppresses anaphylaxis. Ibrutinib was unique among these tyro-
sine kinase antagonists in acting synergistically with an HR1 in-
hibitor and a b-adrenergic receptor agonist to suppress IgE-
mediated anaphylaxis. Unlike Syk activation, the downstream
activation of BTK is not an absolute requirement for mast cell
degranulation because of the presence of alternative pathways.
The importance of the BTK pathway becomes apparent in our
model, however, when other inhibitors prevent compensation
for a delay or moderate decrease in mast cell degranulation and
in mice that express a chimeric FcεRI that appears to signal less
potently than wild-type FcεRI does.

A second-generation BTK inhibitor, acalabrutinib, has recently
been shown by Dispenza et al90 to suppress antigen-induced, IgE-
mediated anaphylaxis in passively sensitized human cord blood–
reconstituted immunodeficient mice, which produce human mast
cells, although this suppression can be overcome by increasing
the dose of the challenge antigen. Potential differences in the
effectiveness of acalabrutinib versus ibrutinib at suppressing
BTK, potential differences in the susceptibility of human versus
mouse BTK to suppression by these drugs, potential differences
in the potency of antigen versus anti-IgE mAb at inducing the
BTK-independent pathway of mast cell degranulation, and the
longer period of treatment of mice prior to antigen challenge by
Dispenza et al90 than in our studymight explain themore effective
BTK inhibitor suppression of mast cell degranulation in the Dis-
penza study than in this article. Regardless of mechanism, the
ability of BTK inhibitors to partially suppress mast cell degranu-
lation by themselves and to synergize with inhibitors that work
through different mechanisms, without inhibitingmast cell desen-
sitization, suggests a potential for prophylactic use during desen-
sitization. However, ibrutinib is considerably more expensive
than HR1 antagonists and b-adrenergic agonists, and it is not
yet known whether it can enhance the suppressive effect of an
HR1 antagonist/b-adrenergic receptor agonist combination.

The third group of agents tested had little or no efficacy at
suppressing anti-FcεRIa mAb– or anti-IgE mAb–induced hypo-
thermia by themselves or when combined with an HR1-specific
antihistamine. This group includes HR2 and HR4 inhibitors, cro-
molyn, theophylline, zileuton, montelukast, a platelet-activating
factor antagonist, a bradykinin receptor 2 antagonist, an inhibitor
of plasma kallikrein, and serotonin receptor antagonists, in addi-
tion to a number of nutraceuticals that have been described by
others61-71 to suppress anaphylaxis in mouse models. Surpris-
ingly, epinephrine was without efficacy as a therapeutic in our
model, although it had some efficacy as a prophylactic. At lower
doses, epinephrine had no obvious toxic effects but failed to alter
hypothermia development when injected after anti-IgE mAb
challenge, while higher doses induced hypothermia by them-
selves, most likely by activating b-adrenergic receptors suffi-
ciently to decrease cardiac output by increasing arterial
resistance. This possible explanation is consistent with the greater
effect of a-adrenergic stimulation in mice than in humans.
Although epinephrine’s a-adrenergic receptor–mediated vaso-
constriction is thought to increase recovery from human anaphy-
laxis by enhancing its b-adrenergic receptor-mediated increases
in heart rate and contractility, the a-adrenergic receptor–related
adverse effects of this drug make it unsuitable for prophylactic
use.91,92

The most important practical consequence of our work is
evidence that adding a nontoxic dose of a b-adrenergic agonist to
an HR1-specific antihistamine provides considerably better pro-
tection against FcεRI-mediated anaphylaxis than the HR1-
specific antihistamine alone. Several b-adrenergic agonists are
US Food and Drug Administration–approved drugs, and these
drugs are easily available, relatively inexpensive, and have been
used for many years to treat asthma. Consequently, their use
with antihistamines for prophylaxis during rapid desensitization
seems reasonable and practical. In contrast, the clinical use of a
Syk inhibitor, such as fostamatinib, as prophylaxis during rapid
desensitization may be problematic. Fostamatinib, while
approved for use in immune thrombocytopenic purpura, is expen-
sive and appears to block mast cell desensitization. The last issue
might not be a problem for very short-term suppression of
anaphylaxis, but it would likely be problematic for use during
rapid desensitization, which depends, at least in part, on tempo-
rary inhibition of mast cell signaling.18 In contrast to our
in vivo observation, previous in vitro studies found that FcεRI-
mediated mast cell and basophil desensitization was not blocked
by a Syk inhibitor.93 This apparent discrepancy probably repre-
sents an in vivo/in vitro difference, although the possibility that
it reflects the use of different Syk inhibitors in the in vitro and
in vivo studies cannot be excluded (the inhibitor that was used
for the in vitro studies is no longer available).

One strength of our article is its evidence that prophylaxis with
2 or 3 drugs has similar suppressive effects on FcεRI-mediated
anaphylaxis in human cord blood–reconstituted NSGS and
NRG-SGM3 mice, which have human mast cells and basophils,
as it has in normal mice. Substantial inhibition (albeit incomplete)
was observed in these reconstituted mice even though transgenic
production of human stem cell factor, IL-3, and GM-CSF in this
model causes the production of a large number of human mast
cells, partially activates these cells, and increases sensitivity to
histamine.

Our observations, however, have 4 important limitations. First,
agents that have little or no ability to inhibit mast cell
degranulation in mice may have considerable ability to inhibit
mast cell degranulation in other species, including humans. In this
regard, cromolyn has been shown to have greater ability to
suppress mast cell degranulation in rats than in mice.94 Second,
even mice that have humanmast cells have mouse, rather than hu-
man tissues that respond to mast cell–released mediators; these
may respond differently than human tissues do. Our failure to
observe a therapeutic effect of epinephrine may be an example
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of this. Third, our interpretations about the mechanisms respon-
sible for the effects of some of our inhibitors are complicated
by the incomplete specificity of some of these inhibitors. For
example, fostamatinib inhibits some tyrosine kinases, including
the src-family kinases, JAK1, JAK3, c-Kit, and Flt 3 in addition
to Syk.95 Consequently, we cannot totally eliminate the possibil-
ity that these off-target effects of fostamatinib contribute to its in-
hibition of mast cell degranulation and/or mast cell
desensitization. We think this unlikely, however, because fosta-
matinib inhibits Syk 5 times more potently than it inhibits the
other tyrosine kinases when studied in vitro on mouse mast
cells,59 while a fostamatinib dose (40 mg/kg) that is barely able
to inhibit Syk-dependent mast cell degranulation in vivo signifi-
cantly suppresses mast cell desensitization (Fig 7, A-C). Fourth,
our murine models, even those with human mast cells and baso-
phils, do not develop detectable IgE-mediated disease other
than the development of shock (eg, urticaria, bronchospasm,
flushing, angioedema, and fever). Consequently, drugs that sup-
press these disease features but do not suppress shock (which is
predominantly mediated in mice by vascular leak) will not be
found to be efficacious in our models. This may explain why
some of the drugs found useful by Castells and her colleagues
for IgE-mediated features other than shock, including flushing
and bronchospasm,42 had no efficacy in our model. Thus, our
observation that b-adrenergic agonists are useful for preventing
shock during rapid desensitization is more likely to be human-
relevant than the failure of several other agents to ameliorate
anaphylaxis in our models. We look forward to clinical trials
that evaluate the usefulness of adding relatively small doses of
b-adrenergic agonists to antihistamines during rapid drug desen-
sitization and that evaluate rapid desensitization with anti-FcεRIa
mAbs.

Clinical implications: The combined prophylactic use of an
HR1-specific antihistamine and ab-adrenergic receptor agonist
can increase the safety of rapid desensitization.
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FIG E1. (A) Triprolidine dose-response (n 5 4-5 mice per group) and (B) ki-

netic data (n 5 4-5 mice per group) establish that the maximum ability of

this antihistamine to inhibit IgE-mediated anaphylaxis is achieved by

administration of at least 200 mg/mouse 30 to 60minutes prior to challenge.

Statistical tests: Kruskal-Wallis and 1-tailed Mann-Whitney U test with

correction for multiple comparisons for both panels.
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FIG E2. Epinephrine fails to inhibit the development of IgE-mediated anaphylaxis in BALB/c mice. BALB/c

mice (n 5 4 per group) were primed by injection of 10 mg of IgE anti-TNP mAb and challenged IV the next

day with 10 mg of TNP-BSA. Five minutes after challenge mice were injected SC with saline or 2, 10, or 50 mg

of epinephrine and followed for 1 hour for development of hypothermia. No significant differences were

found using Kruskal-Wallis test.
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FIG E3. Prophylactic effect of epinephrine and therapeutic effects of triprolidine and albuterol on IgE-

mediated anaphylaxis. (A) BALB/cmice (n5 5-6 per group) were injected SCwith saline or 25 mg of epineph-

rine. Ten minutes later they were injected IV with saline or 20 mg of EM-95 mouse anti-IgE mAb and rectal

temperatures were followed for 60 minutes. To adjust for the direct effects of epinephrine on rectal temper-

ature, deviations from baseline in mice injected with epinephrine alone (red line) were subtracted for each

time point from temperatures in mice injected with epinephrine1 anti-IgE mAb (green line). Adjusted tem-

peratures are shown on the orange line. (B) BALB/c mice (n5 6 per group) were injected IV with saline or 20

mg of EM-95 anti-mouse IgE mAb. Five minutes later somemice were injected IP with the doses of albuterol

and/or triprolidine shown. Rectal temperatures were followed for 60 minutes after anti-mouse IgE mAb in-

jection. Statistical tests: Kruskal-Wallis and Mann-Whitney U tests for both panels. *P < .05; **P < .01.

J ALLERGY CLIN IMMUNOL

VOLUME nnn, NUMBER nn

MORRIS ET AL 14.e3



0 2 4 6

Max. Temp. Drop (°C)

Vehicle

IgE + Idelalisib, 40 mg/kg
IgE + Idelalisib, 80 mg/kg

IgE

0 1 2 3 4

IgE + Fostamatinib
IgE + Imatinib
IgE + Vehicle

0 100 200 300
MMCP1 (ng/ml)

Max. Temp. Drop (°C)

IgE + Fostamatinib
IgE + Imatinib
IgE + Vehicle

n.s.

n.s.

n.s.

*

*

**
** **

FIG E4. Fostamatinib, but not imatinib, idelalisib, or ibrutinib, provides

acute protection against anaphylaxis in BALB/c mice. BALB/c mice (n 5 4-6

per group) were pretreated with vehicle, imatinib (1.25 mg/kg), fostamati-

nib (80 mg/kg), idelalisib, or ibrutinib (10 mg/kg) and challenged IV with

20 mg of anti-mouse IgE mAb. Mice were followed for 60 minutes for devel-

opment of hypothermia; sera were obtained from some mice 4 hours after

challenge andMMCP1 levels were determined by ELISA. Statistical tests: 1-

way ANOVA with 1-tailed Mann-WhitneyU test with correction for multiple

comparisons. *P < .05; **P < .01.
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FIG E5. Combined antihistamine (triprolidine), b-adrenergic agonist (albuterol), and Syk inhibitor (fostama-

tinib) treatment protects highly susceptible mice from FcεRI-mediated anaphylaxis. (A) huFcεRIa transgenic

mice (n 5 5 per group) were pretreated with vehicle or a combination of triprolidine, albuterol, and fosta-

matinib and challenged IV with 50 mg of AER-37 anti-huFcεRIa or isotype-control mAb, then followed for

60 minutes for development of hypothermia. Statistical tests: Kruskal-Wallis and 1-tailed Mann-Whitney

U test with correction for multiple comparisons for both. (B) reNSGS mice were pretreated with vehicle,

2.5 mg/kg of indacaterol 1 200 mg of triprolidine; or indacaterol, triprolidine 1 40 mg/kg of fostamatinib

and challenged IV with 500 ng of anti-huFcεRIa mAb. Mice were followed for 60 minutes for rectal temper-

ature. Statistical tests: (A) 2- or 3-way ANOVA and Tukey’s honest significant difference test. (B) 3-way AN-

OVA and Tukey’s honest significant difference test. *P < .05; **P < .01; ***P <.001; ****P < .0001.
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FIG E6. The combination of albuterol and triprolidine enhances protection against IgE-mediated anaphy-

laxis in male and female BALB/c mice and female C57Bl/6 mice. (A) Anti-mouse IgE mAb induces anaphy-

laxis in male and female BALB/c mice and female C57Bl/6 mice. (B) The combination of albuterol 5 mg/kg IP

and triprolidine 200 mg IP decreases hypothermia induced by 20 mg EM-95 anti-IgE mAb in both BALB/c and

C57Bl/6 female mice. Combination of 2 experiments, total of 10 mice per group. (C) The combination of al-

buterol 5 mg/kg IP and triprolidine 200 mg IP decreases hypothermia induced by 20 mg of EM-95 anti-IgE

mAb in both BALB/c male and female mice. n 5 5 mice per group. Statistical tests: Kruskal-Wallis and 1-

tailed Mann-Whitney U test with correction for multiple comparisons for all panels. *P < .05; **P < .01;

***P < .001; ****P < .0001.
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TABLE E1. Agents tested for inhibition of IgE-mediated anaphylaxis

Agent Dose range Route Minutes prechallenge Vehicle

Fostamatinib 2.5, 5, 10, 20, 40, or 80 mg/kg IP 30, 37, 60, 75, 120, 150 0.1% carboxymethylcellulose

Imatinib 1.25 mg IP 30 Saline

Triprolidine 50, 100, 200, 400, or 800 mg IP 30, 60, or 120 Saline

JNJ-777120 20 mg/kg SC 30 4.4% DMSO in saline

Resveratrol 10 mg/kg OG 60 2% DMSO in saline

Formoterol 10, 20, or 40 mg/kg IV 10, 37, 75, or 150 0.6% DMSO in saline

Theophylline 5 mg/kg IP 30 Saline

Cromolyn 300 mg IP 30 Saline

Curcumin 50 mg/kg OG 60 7.3% DMSO in saline

Kaempferol 50 mg/kg OG 60 7.3% DMSO in saline

Quercetin 50 mg/kg OG 60 7.3% DMSO in saline

Indacaterol 2.5, 5, or 10 mg/kg IV 30 2.3% DMSO in saline

or 2.5 mg/kg SC 37, 60, 75, 150, 300, or 600 0.55% DMSO in saline

Doxepin 10 mg/kg IP 5 Saline

Terbutaline 0.5 or 2 mg/kg SC 30 Saline

Albuterol 0.078125, 0.15625, 0.312, 0.625,

1.25, 2.5, 5, 10, or 20 mg/kg

IP 30 Saline

Idelalisib 5, 10, 20, 40 or 80 mg/kg IP 30 30% polyethylene glycol 400/0.5%

Tween 80/5% propylene glycol

Ibrutinib 10 or 25 mg/kg IP 30 1.8% DMSO in saline

Ketotifen fumarate 25 mg/kg IP 30 25% DMSO in saline

Zileuton 50 mg/kg OG 24 or 60 23.8% DMSO in saline

Montelukast 6 mg/kg SC 24 or 60 16.7% DMSO in saline

Ranitidine 100 mg/kg IP 30 PBS

Epinephrine 2, 10, or 50 mg SC 5 (postchallenge) Saline

OG, Oral gavage.
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TABLE E2. Effects of individual agents on IgE-mediated anaphylaxis

Target Inhibitor/agonist* Effect on FcεRI-mediated induction of hypothermia

HR1 Triprolidine Considerable dose-related inhibition

Doxepin� Considerable inhibition, similar to triprolidine

Ketofen� Less effective inhibition than triprolidine or doxepin

HR2 Ranitidine No effect

HR4 JNJ-777120 Tendency toward mild inhibition, but not significant

b-adrenergic receptor Formoterol* Considerable dose-related inhibition

Terbutaline* Considerable dose-related inhibition

Albuterol* Considerable dose-related inhibition

Indacaterol* Considerable dose-related inhibition

a- and b-adrenergic receptors Epinephrine* Direct toxic effect, induces hypothermia

Syk Fostamatinib§ Considerable dose-related inhibition

BTK Ibrutinib Little or no effect

PI3K P110d Idelalisib Little or no effect

Abl/Kit Imatinib Little or no effect

Mast cells Cromolyn sodium Little or no effect

5-lipoxygenase Zileuton Little or no effect

CysLT1 Montelukast Little or no effect

Leukotriene D4R REV 5901 Little or no effect

PAFR ABT-491 Little or no effect

5-HTR1/2/2a/7 Metergoline Little or no effect

Ketanserin

Corticosteroid receptor Dexamethasone Little or no effect

Multiple targets and antioxidant effects Resveratrol (phenol/phytoalexin) Little or no effect

Quercetin (flavonoid polyphenol) Little or no effect

Kaempferol (antioxidant flavanol) Little or no effect

Curcumin (phenol diarylheptanoid) Little or no effect

Multiple targets Theophylline Moderate inhibitory effect

HTR, Hydroxytryptophan receptor; PAFR, platelet-activating factor receptor.

*Agonist.

�Inhibits both HR1 and HR2.

�Inhibits HR1 and 5-HTRs.
§Also suppresses FcεRI desensitization.

J ALLERGY CLIN IMMUNOL

nnn 2021

14.e8 MORRIS ET AL



TABLE E3. Effects of combinations of agents on IgE-mediated anaphylaxis

Drug combination Targets Suppressive effect on FCεRI-mediated hypothermia

Triprolidine 1 ranitidine HR1, HR2 Equal to triprolidine alone

Triprolidine 1 JNJ-777120 HR1, HR4 Tendency to be greater than triprolidine alone, but not significant

Triprolidine 1 albuterol HR1, b-AR* Greater than either drug alone

Triprolidine 1 indacaterol HR1, b-AR* Greater than either drug alone

Triprolidine 1 terbutaline HR1, b-AR* Greater than either drug alone

Triprolidine 1 fostamatinib HR1, Syk Greater than either drug alone

Triprolidine 1 idelalisib HR1, PI3K P110d Equal to triprolidine alone

Triprolidine 1 ibrutinib HR1, BTK Greater than either drug alone

Triprolidine 1 imatinib HR1, Abl/Kit Equal to triprolidine alone

Albuterol 1 idelalisib b-AR,* PI3K P110d Equal to albuterol alone

Albuterol 1 ibrutinib b-AR,*BTK Greater than either drug alone

Albuterol 1 imatinib b-AR,*Abl/Kit Equal to albuterol alone

Indacaterol 1 fostamatinib b-AR,*Syk Greater than either drug alone

Triprolidine 1 indacaterol 1 fostamatinib HR1, b-AR,* Syk Similar to any of the 2 drug combinations

Triprolidine 1 albuterol 1 fostamatinib HR1, b-AR,* Syk Similar to triprolidine 1 albuterol

Imatinib 1 fostamatinib Abl/Kit, Syk Greater than either drug alone

Idelalisib 1 fostamatinib PI3K P110d, Syk Greater than either drug alone

Ibrutinib 1 fostamatinib BTK, Syk Greater than either drug alone

b-AR, b-adrenergic receptor.

*Agonist.
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