EFNA4 promotes cell proliferation and tumor metastasis in hepatocellular carcinoma through a PIK3R2/GSK3β/β-catenin positive feedback loop

Junhao Lin, Chunting Zeng, JiaKang Zhang, Zhenghui Song, Na Qi, Xinhui Liu, Ziyan Zhang, Aimin Li, Fengsheng Chen

PII: S2162-2531(21)00143-8

DOI: https://doi.org/10.1016/j.omtn.2021.06.002

Reference: OMTN 1289

To appear in: Molecular Therapy: Nucleic Acid

Received Date: 10 February 2021

Accepted Date: 8 June 2021

Please cite this article as: Lin J, Zeng C, Zhang J, Song Z, Qi N, Liu X, Zhang Z, Li A, Chen F, EFNA4 promotes cell proliferation and tumor metastasis in hepatocellular carcinoma through a PIK3R2/GSK3β/ β-catenin positive feedback loop, *Molecular Therapy: Nucleic Acid* (2021), doi: https://doi.org/10.1016/ j.omtn.2021.06.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 The Author(s).

	Journal Pre-proof
1	
2	Title page
3	Article type: Article
4	
5	1111e; EFNA4 promotes cell proliferation and tumor metastasis in nepatocellular
6	carcinoma through a PIK3R2/GSK3 β / β -catenin positive feedback loop
7	
8 9	Running title: EFNA4 promotes hepatocellular carcinoma proliferation and metastasis
10	
11	Authors list:
12	$b_{1,2}$ $c_{1,2,3}$ $c_{1,3,3}$ $c_{1,3,3}$ $c_{1,3,3}$ $c_{1,3,3,3}$ $c_{1,3,3,3,3}$ $c_{1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3$
13 14	Junhao Lin ^{40,} , Chunting Zeng ^{40,} , JiaKang Zhang ^{40,} , Zhenghui Song ^{40,20} , Na Qi ^{40,7} , Xinhui Liu ^{$e1,2$} , Ziyan Zhang ^{f1,2} , Aimin Li ^{$*1,2$} , Fengsheng Chen ^{$*1,2$}
15	Annul Elu , Elyan Enang , Annul El , Tengsheng enen
16	Affiliation list:
17	¹ Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern
18	Medical University. Guangzhou, 510315, China.
19	² Cancer Center, Southern Medical University, Guangzhou, 510315, China.
20	³ Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital,
21	Central South University, Changsha, 410008, China.
22	Department of Pharmacy, Guilin Medical University, Guilin, 541004, China.
23 24	
25	
00	
26	Co-Correspondence: Aimin Li, Ph.D
27	Institution and address: Cancer Center, Integrated hospital of traditional Chinese
28	Medicine, Southern Medical University, Guangzhou, 510315, China
29	Email : liaimin2005@163.com
30	Tel: +8618520088006
31	Correspondence: Fengsheng Chen, Ph.D
32	Institution and address: Cancer Center, Integrated hospital of traditional Chinese
33	Medicine, Southern Medical University, Guangzhou, 510315, China

- **34 Tel:** +8618520088578
- **Email:** fsc0126@163.com
- **Keywords:** Ephrin A4, hepatocellular carcinoma, EPHA2, PIK3R2, feedback loop,
- 37 proliferation, migration.38
- **39** Author Contributions

40

unior Contributions

- 41 Lin.J.H., Zeng.C.T. designed the study, completed the experiment, collated the data and
- 42 contributed to modifying the manuscript.
- 43 Lin.J.H. produced the initial draft of the manuscript.
- 44 Li.A.M., Chen.F.S. designed the study, provided research funds and be responsible for the
- 45 revision of the entire manuscript.
- 46 All authors have read and approved the final submitted manuscript.
- 47 These authors contributed equally to this work.
- 48 Zhang.J.K., Qi.N., Song.Z.H., Liu.X.H., Zhang.Z.Y. all participated in the course of the
- 49 experiment.
- 50
- 51 Email:
- 52
- 53 Lin.J.H :<u>1_i_n@163.com</u>
- 54 Zeng.C.T : <u>corrine-zct@foxmail.com</u>
- 55 Zhang.J.K: <u>zjk1224500456@163.com</u>
- 56 Song.Z.H: <u>songzh0216@csu.edu.cn</u>
- 57 Liu.X.H:<u>liuxinhui89@126.com</u>
- 58 Qi.N :qina1012@glmc.edu.cn
- 59 Zhang.Z.Y:<u>martin_zhangzy@163.com</u>

	Journal Pre-proof
60	EFNA4 promotes cell proliferation and tumor metastasis in hepatocellular
61	carcinoma through a PIK3R2/GSK3 eta/eta -catenin positive feedback loop
62	
63	Running title: EFNA4 promotes hepatocellular carcinoma proliferation and
64	metastasis
65	
66	Keywords: EFNA4, hepatocellular carcinoma, EPHA2, PIK3R2, feedback
67	loop, proliferation, migration.
68	
69	Abbreviations: CI, confidence interval; DMEM, Dulbecco's modified eagle
70	medium; EFNA4, Ephrin A4; EMT, epithelial-mesenchymal transition; GEO,
71	Gene Expression Omnibus; HCC, hepatocellular carcinoma; HR, hazard ratio;
72	IHC, immunohistochemistry; OS, overall survival; PFS, progress free survival;
73	PIK3R2, phosphoinositide-3-kinase regulatory subunit 2; EPHA, EPH receptor
74	A; qRT-PCR, quantitative real-time polymerase chain reaction; TCGA, The
75	Cancer Genome Atlas;
76	
77	Abstract
78	Rapid tumor progression, metastasis, and diagnosis in advanced stages of disease are
79	the main reasons for the short survival time and high mortality rate of patients with
80	hepatocellular carcinoma (HCC). Ephrin A4(EFNA4), the ligand of EPH family,

81 participles in the development of blood vessels and epithelium by regulating cell

82	migration and rejection. In our study, based on bioinformatics analyses, we found that
83	EFNA4 was highly expressed and led to poor prognosis in patients with HCC. We
84	demonstrated that overexpression of EFNA4 significantly promoted HCC cell
85	proliferation and migration in vivo or in vitro. In addition, knockdown of EFNA4
86	inhibited the proliferation and migration of HCC cells. Furthermore, EFNA4 was
87	found to directly interact with EPHA2 and promote its phosphorylation at Ser897,
88	followed by recruitment of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2),
89	and activation of the glycogen synthase kinase-3beta (GSK3 β)/ β -catenin signaling
90	pathway. Moreover, overexpression of β -catenin further promoted the expression of
91	PIK3R2, which formed a positive feedback loop. The results revealed that abnormal
92	expression of EFNA4 is the main switch of the PIK3R2/GSK3 β / β -catenin loop that
93	influenced the proliferation and migration of HCC cells and suggest that EFNA4 is a
94	potential prognostic marker and a prospective therapeutic target in patients with HCC.
95	
96	Introduction
97	Liver cancer is one of the most common type of malignant tumors, ranking fourth in
98	mortality rate and second in cancer-related mortality of males in 2018 worldwide. ¹
99	Most patients with liver cancer have entered the advanced stage of disease at the time
100	of diagnosis, and molecular targeting therapy becomes more important for those
101	missing the opportunity for operation. Although Tyrosine kinase inhibitors are the
102	first-line treatment for advanced liver cancer patients, TKIs (e.g. sorafenib) are prone
103	to occur drug resistance. Therefore, the discovery of new treatment options for liver

```
Journal Pre-proo
```

104 cancer, such as sorafenib enhancers or antibody-drug conjugates (ADCs) has become105 an urgent need for the clinical treatment of liver cancer.

106

107	The EPH/ephrin (EPH/EFN) system is widely expressed in various cells by binding to
108	the cell membrane. They play crucial roles in development, cell proliferation and
109	differentiation by cell-cell contact, regulation of cell signals and transfer into the
110	nucleus, and stimulation of downstream signaling pathways, which are closely related
111	to the appearance of tumors. Moreover, there are nine types of EPHA receptors and
112	five types of EPHB receptors according to the differences in homology, structural
113	domain, and affinity of gene sequence. ² The EPH receptor-interacting proteins (EFN
114	ligands) are divided into eight subtypes, namely five EFNA ligands and three EFNB
115	ligands. The polymer is formed and bidirectional signaling is active when the receptor
116	binds to the ligands of adjacent cells. EFNA ligands bind to the corresponding EPH
117	receptor activate the tyrosine kinase in the cytoplasm of the receptor by changing the
118	conformation of EPH, and result in phosphorylation of the corresponding receptor and
119	activation of downstream signaling. ³ In addition, EFNA ligands activate the relevant
120	surface receptors of their host cells, such as the p75NT receptor (p75NTR). ^{3, 4}

121

Ephrin A4, also termed EFNA4, mainly expressed in the spleen, lymph nodes, ovary,
small intestine, and colon of adults, as well as in the heart, lungs, liver, and kidneys of
the fetus. It is involved in the development of neurons, blood vessels, and epithelium
by regulating cell migration, rejection, and adhesion. Studies have shown that EFNA4

126	is involved in the proliferation and metastasis of glioma, ovarian cancer, chronic
127	lymphocytic leukemia, and other tumors. ⁵⁻⁸ Moreover, the ADC drug PF-06647263, a
128	conjugate of an EFNA4 monoclonal antibody and calicheamicins, provides a new
129	therapeutic approach for the targeted therapy of patients with advanced breast cancer
130	and ovarian cancer, offering outstanding pharmacokinetics and safety. ⁹ However, the
131	role of EFNA4 in the development of hepatocellular carcinoma (HCC) has not been
132	reported yet, and the upstream and downstream regulation of EFNA4 remain unclear.
133	Therefore, the aim of this study was to investigate the role of EFNA4 in the process of
134	hepatocellular carcinoma occurrence and development.
135	
136	Based on public database analyses (The Cancer Genome Atlas [TCGA] and Gene
137	Expression Omnibus [GEO]), we found that EFNA4 is highly expressed in HCC and
138	correlated with poorer disease prognosis. Increased expression of EFNA4 promotes
139	the proliferation and migration ability of HCC cells. Mechanistically, overexpression
140	of EFNA4 activates EPHA2 receptor phosphorylation at Ser897. Subsequently, the
141	phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2)/glycogen synthase
142	kinase-3beta (GSK3 β)/ β -catenin axis influenced the proliferation and migration of
143	HCC cells. Therefore, these findings suggest that EFNA4 could be used as a
144	prognostic marker and that targeting EFNA4 represents a potential therapeutic
145	strategy for patients with advanced HCC.
146	

Results

		D	nr		
սո	aı			U	U.

1	4	8
---	---	---

149	EFNA4 expression is associated with poor prognosis in liver cancer
150	Data from TCGA and GEO databases were extracted and analyzed by bioinformatics
151	methods. ¹⁰ For TCGA database analysis, the results indicated that EFNA4 was
152	significantly overexpressed in patients with liver cancer, and this overexpression was
153	linked to a worse clinical prognosis. Notably, we found that the expression of EFNA4
154	was positively correlated with TNM staging, and high EFNA4 expression (based on
155	370 HCC samples) was a significant indicator of poor OS and PFS (OS: hazard ratio
156	[HR]=1.96, 95% confidence interval [CI]: 1.37-2.81, P=0.00018; PFS: HR=1.61, 95%
157	CI: 1.16–2.22, P=0.0036) (Figure 1A–1C). Furthermore, gene set enrichment analysis,
158	KEGG, and GO enrichment were used to analyze data of patients with HCC obtained
159	from the GEO database (GSE 121248 and GSE 107170). The results revealed that
160	EFNA4 expression was negatively correlated with the ability of cells for adhesion,
161	indicating that overexpression of EFNA4 decreases the intercellular adhesion
162	(P<0.001; Enrichment Score (ES) =0.59, 0.46). Moreover, it may affect the
163	occurrence and metastasis of liver tumors by affecting the intercellular connection, or
164	participating in the regulation of multiple tumor pathways, such as the PI3K-AKT or
165	WNT signaling pathway (Supplementary Figure S1A-S1C).
166	
167	To further investigate the correlation between EFNA4 and liver cancer, we analyzed
168	its expression in liver tumor arrays by IHC. As expected, EFNA4 expression in liver
169	tumor tissue was markedly higher than that recorded in adjacent tissue (P<0.001)

170	(Figure 1D and 1E). Notably, the expression of EFNA4 in 90 tissue samples of liver
171	cancer was related to the expression of AFP (χ^2 test, P=0.0362) and the risk of
172	vascular invasion (χ^2 test, P=0.0319). This finding indicates that liver cancer patients
173	with high EFNA4 expression were more likely to experience tumor metastasis
174	(Supplementary Table S1). In addition, we compared the basal expression of EFNA4
175	among normal immortalized liver epithelial cells (LO2) and HCC cells. As shown in
176	Figures 1F and 1G, EFNA4 expression was upregulated in HCC cell lines at both the
177	RNA and protein levels.
178	
179	EFNA4 enhances the replication and proliferation of HCC cell lines in vitro and
180	in vivo
181	The present clinical data suggested that EFNA4 may promote tumor progression. To
182	investigate the role of EFNA4 in the pathogenesis and development of liver cancer,
183	we overexpressed EFNA4 in HCC cell lines Hep3B and Huh7. Transfection
184	efficiency was verified by qRT-PCR (Figure 2A). EdU assay indicated that, after the
185	overexpression of EFNA4, the number of cells in the DNA replication process of
186	HCC cell lines was significantly increased compared with the vector group (P<0.001)
187	(Figure 2B and 2C). As shown in Figures 2D and 2E, the percentage of S phase cells
188	in the empty vector group was 31.89% and 24.46% in Hep3B and Huh7, respectively.
189	Following the overexpression of EFNA4, these values increased to 40.19% and
190	33.14%, respectively (P<0.001). Together, the two assays demonstrated that
191	overexpression of EFNA4 could enhance the ability of HCC cells for DNA

192 replication.

193

194	We used a mouse subcutaneous tumor model to further confirm the influence of
195	EFNA4 in vivo. Firstly, we transfected HepG2 and Huh7 cell lines with
196	EFNA4-overexpressing lentivirus or empty vector lentivirus. After successful
197	transfection, the cells presented green fluorescence, while EFNA4 overexpression was
198	confirmed by qRT-PCR (Supplementary Figure S2A and S2B). Subsequently, the
199	successfully transfected tumor cells were injected into the right groin of the nude mice.
200	Subcutaneous tumor formation assay showed that the mice in the EFNA4
201	overexpression group showed a larger tumor volume than those in the empty vector
202	group (P<0.05) (Figure 2F and 2G; Supplementary Figure S2C–S2E). Further IHC
203	and HE staining was performed on the tumor tissue. Compared with the empty vector
204	group, the tumor proliferation index Ki67 was significantly increased in the EFNA4
205	overexpression group (Figure2H; Supplementary Figure S2F). In conclusion,
206	overexpression of EFNA4 increases the ability of HCC cells for DNA replication and
207	proliferation.
208	

209 Downregulation of EFNA4 inhibits HCC cell replication and proliferation

210 To further investigate the biological role of EFNA4, SiRNA technology was used to

- 211 inhibit is expression in HCC cell lines HepG2 and MHCC-97H. The transfection
- efficiencies were verified by qRT-PCR (Supplementary FigureS2G). As shown in
- 213 Supplementary Figures S2H and S2I, downregulation of EFNA4 expression damaged

214	the DNA replication capacity of HCC cell lines ($P<0.05$). As shown by the cell cycle
215	assay, the decline in EFNA4 expression led to a reduction in the number of S phase
216	cells (P<0.05) (Supplementary Figure S2J and S2K). Therefore, inhibition of EFNA4
217	expression reduced the ability of HCC cells for DNA replication and proliferation.
218	
219	EFNA4 is essential for epithelial-mesenchymal transition (EMT) and migration
220	in vitro and in vivo
221	Several research studies found that the abnormal expression of EFNA4 was related to
222	the occurrence of multiple tumor metastases. ^{11, 12} We further examined the effect of
223	EFNA4 on the migration ability of HCC cells. For this purpose, Transwell and
224	wound-healing assays were used to investigate the role of EFNA4 overexpression in
225	HCC cells. Functionally, the EFNA4 overexpression group showed a larger healing
226	area compared with the control group (P<0.05) (Figure 3A and 3B). Moreover,
227	upregulation of EFNA4 promoted the penetration of the basement membrane by
228	tumor cells, thereby facilitating cell migration (P<0.001) (Figure 3C and 3D). Notably,
229	according to the results of the western blotting analysis, upregulation of EFNA4
230	assisted HCC cell lines Hep3B and Huh7 in acquiring a mesenchymal phenotype, as
231	mesenchymal markers (N-cadherin and vimentin) were significantly upregulated and
232	the epithelial marker E-cadherin was significantly downregulated. Overexpression of
233	EFNA4 in HCC cells may induce EMT (Figure 3E).
234	

235 To verify the effect of EFNA4 overexpression on the ability of tumors for metastasis

236	in vivo, HCC cells with EFNA4-overexpressing lentivirus or empty vector lentivirus
237	were injected into the liver of 6-week-old female nude mice. All mice were
238	euthanized 30 days later to verify the effects of EFNA4 on tumor cell migration. As
239	shown in Figure 3F, the dotted ellipse indicates the site of tumor implantation. More
240	tumor nodules with fluorescence appeared in the liver of mice in the EFNA4
241	overexpression group. Moreover, the liver weight/body weight ratio in the
242	experimental group was significantly higher than that recorded in the control group,
243	suggesting that overexpression of EFNA4 increases the risk of intrahepatic metastasis
244	(Figure 3G and 3H). Subsequently, IHC and HE staining were performed on the
245	tumor tissue; N-cadherin was upregulated, whereas E-cadherin was downregulated in
246	the EFNA4 overexpression tumor tissues (Figure 3I). Taken together, upregulation of
247	EFNA4 promotes EMT and migration in vitro and in vivo.
248	
249	Downregulation of EFNA4 inhibits HCC cell EMT and migration

250 In contrast, we found that the migratory ability of cells was significantly decreased

after downregulation of EFNA4 expression. As shown in the wound-healing assay, the

downregulation of EFNA4 expression reduced the migration area of HCC cells

253 (P<0.05) (Supplementary Figure S3A and S3B) and weakened their migratory ability

in the basement membrane (P<0.001) (Supplementary Figure S3C and S3D). Notably,

inhibition of EFNA4 expression increased the expression of E-cadherin in HepG2 and

256 MHCC-97H cell lines, whereas it downregulated the expression of N-cadherin

257 (Supplementary Figure S3E). In conclusion, downregulation of EFNA4 expression

inhibited the EMT and migratory ability of HCC cells.

259

260 EFNA4 promotes phosphorylation of EPHA2 at Ser897 and targets it to activate PIK3R2 261 262 We investigated the molecular mechanism through which EFNA4 is associated with HCC proliferation and metastasis. Illumina HiSeqTM sequence was used to explore the 263 downstream molecules involved in this process and further clarify their specific 264 mechanisms. According to the results of high-throughput sequencing, an overlap 265 analysis of EFNA4-related molecules in TCGA database (|R| > 0.2, P<0.05) and 266 high-throughput sequencing result was performed. A total of 154 related molecules 267 were found and shown in the Venn diagram (Figure 4A). Following further screening 268 of these molecules (gene counts >100), a series of methods (e.g., expression 269 calorimetry, correlation analysis, and STRING online analysis) were performed 270 (Figure 4B–4D). As a result, PIK3R2, early growth response 1 (EGR1), and FOS 271 were identified as potential downstream regulatory factors. Subsequently, KEGG 272 273 enrichment analysis demonstrated that EFNA4 was related to the PI3K-AKT and MAPK signaling pathways (Supplementary Figure S4A). Therefore, PIK3R2 may be 274

the downstream molecule regulated by EFNA4.

276

277 To verify our hypothesis, the expression and clinical prognosis of PIK3R2, also

278 known as PI3K p85 β subunit, in patients with liver cancer were analyzed through

279 TCGA database. As shown in Supplementary Figures S4B–S4D, the expression of

299	pathway
298	The EFNA4-EPHA2-PIK3R2 axis regulates the GSK3β/β-catenin signaling
297	
296	the mode of action leading to changes in the biological function of HCC cells.
295	and S4G). As discussed above, we believe that EFNA4-EPHA2-PIK3R2 axis may be
294	expression of downstream pathways (Figure 4E and 4F; Supplementary Figure S4F
293	subsequently recruited to the membrane receptor, which finally stimulating the
292	phosphorylating at Tyr772. Follow by EPHA2 activating and PIK3R2 was
291	overexpression of EFNA4 lead to phosphorylation of EPHA2 at Ser897, rather than
290	there is an interaction between EFNA4, EPHA2 and PIK3R2. Moreover,
289	analysis using HCC cell lines Hep3B or Huh7. The experimental results show that,
288	and PIK3R2 by coimmunoprecipitation, immunofluorescence and western blotting
287	results. ^{11, 13} We thus tested and confirmed the interaction between EFNA4, EPHA2,
286	opposite result (P<0.001) (Supplementary Figure S4E). Combined with previous
285	lead to the decrease of PIK3R2, while overexpressed EFNA4 would lead to an
284	DFS: HR=1.9, P=0.005). Likewise, interference with the expression of EFNA4 would
283	significantly shorter than those with low expression of PIK3R2 (OS: HR=2, P=0.0053;
282	OS time and DFS time of patients with high expression of PIK3R2 were also
281	PIK3R2 was also significantly up-regulated in liver cancer patients (P<0.001), and the
280	EFNA4 was positively correlated with PIK3R2 (R=0.34, P<0.05). In addition,

300 To clarify the effect of the EFNA4-EPHA2-PIK3R2 axis on the downstream signaling

301 pathway, we detected changes in proteins through western blotting analysis. As shown

302	in Figure 4G, downregulation of EFNA4 led to a decrease in PIK3R2, phospho-AKT
303	(Ser473), phospho-GSK3 β (Ser9), and β -catenin. In contrast, overexpression of
304	EFNA4 increased the expression of these genes. These results showed that the
305	proliferation and migration of HCC cells may be altered by regulating the
306	EFNA4-EPHA2-PIK3R2 axis associated with the GSK3 β / β -catenin signaling
307	pathway.
308	
309	To validate this conclusion, we carried out rescue experiments on key factors in the
310	EFNA4-EPHA2-PIK3R2 axis. Initially, siRNA technique was used to inhibit the
311	expression of PIK3R2 in HCC cell lines overexpressing EFNA4. Knockdown of
312	PIK3R2 was confirmed by qRT-PCR (Figure 5A). Subsequently, the capacity to
313	migrate, which had been facilitated in HCC cell lines, was restored after knockdown
314	of PIK3R2 (P<0.001) (Figure 5B–5E). The EdU assay showed that knockdown of
315	PIK3R2 restored the DNA replication ability of HCC cell lines (P<0.001) (Figure 5F
316	and 5G). The results of western blotting analysis revealed that knockdown of PIK3R2
317	inhibited the phosphorylation of GSK3 at Ser9, which finally led to the
318	downregulation of β -catenin (Figure 5H).
319	
320	Using the EPH receptor inhibitor NVP-BHG712, we investigated the changes in the

- 321 EFNA4-EPHA2-PIK3R2 axis and downstream factors after changing the activity of
- 322 the EPH receptor. NVP-BHG712, an inhibitor of EPH family tyrosine kinase, inhibits
- 323 phospho-EPHB4 and phospho-EPHA2.¹⁴ We investigated the impact of

324	NVP-BHG712 on HCC cells lines in terms of toxicity and proliferation. The results of
325	the half maximal inhibitory concentration and CCK-8 assays revealed that the
326	semi-inhibitory concentration of NVP-BHG712 on HCC cells was 7.63 μ M and, with
327	the increase in drug concentration, the cell survival rate gradually decreased (Figure
328	6A and 6B). Consistent with previous reports, ¹⁴ phosphorylation of EPHA2 was
329	inhibited by NVP-BHG712 at a concentration >10 μ M; thus, we set the dosages as
330	follows: 2, 10, and 25 μ M. Proteins were extracted 24 h after treatment, and western
331	blotting analysis was performed to analyze the changes in the expression of
332	downstream molecules. As shown in Figure 6C, following inhibition of the
333	phosphorylation of EPHA2 at Ser897, the expression of downstream molecules
334	PIK3R2, phospho-GSK3 β (Ser9) and β -catenin was also inhibited.
335	
336	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loop
336 337	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loop Notably, since the abnormal expression of EFNA4, PIK3R2 was recruited to the
336 337 338	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loop Notably, since the abnormal expression of EFNA4, PIK3R2 was recruited to the EPHA2 receptor on the cell membrane for activation, at the same time, the RNA and
336 337 338 339	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loop Notably, since the abnormal expression of EFNA4, PIK3R2 was recruited to the EPHA2 receptor on the cell membrane for activation, at the same time, the RNA and protein levels of PIK3R2 were also changed. Therefore, we hypothesized that after
336 337 338 339 340	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loop Notably, since the abnormal expression of EFNA4, PIK3R2 was recruited to the EPHA2 receptor on the cell membrane for activation, at the same time, the RNA and protein levels of PIK3R2 were also changed. Therefore, we hypothesized that after PIK3R2 activated GSK3β/β-catenin signaling pathway, β-catenin translocated into
336 337 338 339 340 341	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loopNotably, since the abnormal expression of EFNA4, PIK3R2 was recruited to theEPHA2 receptor on the cell membrane for activation, at the same time, the RNA andprotein levels of PIK3R2 were also changed. Therefore, we hypothesized that afterPIK3R2 activated GSK3β/β-catenin signaling pathway, β-catenin translocated intonucleus and promoted the transcription of PIK3R2, which finally formed a positive
336 337 338 339 340 341 342	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loopNotably, since the abnormal expression of EFNA4, PIK3R2 was recruited to theEPHA2 receptor on the cell membrane for activation, at the same time, the RNA andprotein levels of PIK3R2 were also changed. Therefore, we hypothesized that afterPIK3R2 activated GSK3β/β-catenin signaling pathway, β-catenin translocated intonucleus and promoted the transcription of PIK3R2, which finally formed a positivefeedback loop. In order to conform our hypothesis, knockdown of β-catenin was
 336 337 338 339 340 341 342 343 	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loopNotably, since the abnormal expression of EFNA4, PIK3R2 was recruited to theEPHA2 receptor on the cell membrane for activation, at the same time, the RNA andprotein levels of PIK3R2 were also changed. Therefore, we hypothesized that afterPIK3R2 activated GSK3β/β-catenin signaling pathway, β-catenin translocated intonucleus and promoted the transcription of PIK3R2, which finally formed a positivefeedback loop. In order to conform our hypothesis, knockdown of β-catenin wasexerted in HCC cell line (Supplementary Figure S4H). As expected, after knocking
 336 337 338 339 340 341 342 343 344 	GSK3β/β-catenin and PIK3R2 constitutes a positive feedback loopNotably, since the abnormal expression of EFNA4, PIK3R2 was recruited to theEPHA2 receptor on the cell membrane for activation, at the same time, the RNA andprotein levels of PIK3R2 were also changed. Therefore, we hypothesized that afterPIK3R2 activated GSK3β/β-catenin signaling pathway, β-catenin translocated intonucleus and promoted the transcription of PIK3R2, which finally formed a positivefeedback loop. In order to conform our hypothesis, knockdown of β-catenin wasexerted in HCC cell line (Supplementary Figure S4H). As expected, after knockingdown of β-catenin, the expression of PIK3R2 was also inhibited, while there were no

346	Supplementary Figure S4I). Moreover, a chromatin immunoprecipitation (ChIP) assay
347	was designed to explore the influence of β -catenin on the transcription of PIK3R2.
348	Compared with negative control, the existence of CTCF binding site on PIK3R2
349	promoter sequence was confirmed, which suggested that β -catenin may promote the
350	transcription of PIK3R2 by affecting the activation of CTCF (Figure 6F and 6G).
351	
352	In conclusion, the EFNA4-EPHA2-PIK3R2 axis influences biological functions (e.g.,
353	DNA replication and metastasis) of HCC cell lines by regulating the GSK3 β / β -catenin
354	signaling pathway, subsequently, a feedback from β -catenin influenced the
355	transcriptional expression of PIK3R2 (Figure 7), while abnormal expression of
356	EFNA4 is the main switch for this process.
357	

358 Discussion

359	Despite a gradual improvement, there is a problem of off-target and drug resistance in
360	first- and second-line targeted drugs for the treatment of liver cancer, which leads to
361	high mortality in patients. Rapid tumor progression and metastasis lead to poor
362	prognosis of patients with tumors. The EPH/EFN system widely participates in the
363	regulation of a variety of biological effects in vivo. Several studies found that EFNA4
364	is involved in the regulation of neuronal, vascular, and epithelial development. ⁵⁻⁸
365	However, in the liver, the high expression of EFNA4 is found only in the early stage
366	of infant development and, with increasing age, this expression is gradually reduced.
367	The results of our study suggest that the expression of EFNA4 in patients with HCC is

368	a potential prognostic target. Cheng et al. showed that long-term infection with
369	hepatitis C virus in patients with HCC led to increased expression of EFNA4.
370	According to their bioinformatics analysis, these effects ultimately promoted the
371	proliferation and metastasis of tumor cells. ¹⁵ Thus, we extracted public databases, and
372	found that the expression of EFNA4 was significantly upregulated in HCC patients
373	with hepatitis B virus (GSE121248) and hepatitis C virus infection (GSE107170),
374	followed by activation of some tumor-related signaling pathways.
375	
376	Several studies suggested that EFNA4 plays a role in the development of tumors. It
377	has been reported that the increased expression of EFNA4 promote the metastasis of
378	human choriocarcinoma cell line JEG-3. ⁷ Furthermore, Zhao et al. found that
379	miR-518a-3p inhibited the metastasis of choriocarcinoma cells by downregulating
380	EFNA4. ¹⁶ Aasheim et al. suggested that dysregulation of EFNA4 induced
381	lymphocytic leukemia by affecting the maturation of B lymphocytes and increasing
382	the number of naive lymphocytes. ⁸ However, the upstream and downstream factors of
383	EFNA4 are not fully illustrated. In this study, we found that the expression of EFNA4
384	was significantly increased in tissue sections obtained from patients with liver cancer.
385	Moreover, EFNA4 was positively correlated with the risk of vascular invasion in
386	patients with HCC. Furthermore, in vitro and in vivo biological function experiments
387	revealed that overexpression of EFNA4 promoted DNA replication, EMT, and tumor
388	migration in HCC cells. Knockdown of EFNA4 expression inhibited the DNA
389	replication and metastasis of HCC cells. These results indicate that the abnormal

390	expression of EFNA4 alters the biological function of liver cells, thereby inducin	ng the
391	occurrence of HCC.	

393	Thus far, the molecular mechanism of EFNA4 remains ambiguous. We thus
394	investigated the mechanism of EFNA4 involved in HCC. Our analysis demonstrated
395	that EFNA4 could bind to the EPHA2 receptor, and overexpression of EFNA4 could
396	activate the phosphorylation of the EPHA2 receptor at Ser897, followed by
397	recruitment of PIK3R2 to the cell membrane. Recent studies suggested that EPHA2
398	receptors are involved in the regulation of AKT, YAP, and other downstream
399	pathways. ^{5, 17} In addition, abnormal activation of the EPHA2 receptor may promote
400	the development of nasopharyngeal cancer, ¹⁸ gastric cancer, ¹⁹ and colon cancer. ²⁰
401	While PIK3R2 localizes to the cytosol and also concentrates at focal adhesions as
402	well as in the nucleus. ^{21, 22} Increasing evidence suggests that upregulation of PIK3R2
403	triggers cell transformation. ^{23, 24} Increased PIK3R2 expression at the cell junction
404	leads to local actin polymerization and the subsequent formation of invadopodia-like
405	structures, which mediate basal membrane degradation and invasion. ²¹ We
406	investigated whether the EFNA4-EPHA2 axis promotes HCC cell proliferation and
407	migration by PIK3R2. Our analysis revealed that the expression of PIK3R2 was
408	significantly increased after overexpression of EFNA4. Moreover, as an interaction
409	was shown between EFNA4, EPHA2, and PIK3R2, we further investigated the effects
410	on the downstream signaling pathway. The results showed that the levels of
411	phosphorylated GSK3 β and β -catenin were significantly increased after activation of

412	the EFNA4-EPHA2-PIK3R2 axis, whereas inhibition of EFNA4 blocked these effects.
413	After the activation of this axis, phosphorylation of downstream protein GSK3 β was
414	increased. As reported, phosphorylation of GSK3 β at Ser9 would Inhibit the
415	formation of GSK3 β -APC-AXIN complex, which prevented β -catenin from being
416	degraded by ubiquitin. ²⁵ Thus, following by nuclear translocation of β -catenin, CTCF
417	was activated. ²⁶ Then CTCF bound to the transcriptional initiating region of PIK3R2,
418	leading to an increase in the transcriptional expression of PIK3R2, which finally
419	formed a positive feedback loop and causing uncontrollable proliferation or metastasis
420	in HCC cells.
421	
422	PF-06647263 is a conjugate of an EFNA4 monoclonal antibody and the cytotoxic
423	drugs calicheamicins. Compared with using calicheamicins alone, PF-06647263 has
424	shown better efficacy in targeting tumor stem cells and inhibiting tumor growth in
425	breast and ovarian cancer. Moreover, PF-06647263 achieved sustained tumor
426	regression in both triple-negative breast cancer and patient-derived xenograft ovarian
427	cancer in vivo through continuous induction of tumor cell regression and reduced
428	initiation of tumor stem cells. ²⁷ In phase I clinical trial, PF-06647263 treatment group
429	showed better pharmacokinetic results and safety in patients with metastatic
430	triple-negative breast and ovarian cancer. ⁹ Our study provides a theoretical basis for
431	the use of PF-06647263 in patients with liver cancer.
432	

433 In summary, overexpression of EFNA4 is correlated with poor prognosis in HCC

434	patients. The present evidence indicates that the combination of EFNA4 and EPHA2
435	wound activate PIK3R2/GSK3 β / β -catenin feedback loop and promotes proliferation
436	and migration in HCC cells, and abnormal expression of EFNA4 is the key point of
437	feedback loop activation. Therefore, EFNA4 is a potential prognostic marker and a
438	prospective therapeutic target in patients with HCC.
439	
440	MATERIALS AND METHODS
441	
442	Public data analysis
443	Bioinformatics data were obtained from TCGA and GEO databases (GSE121248 and
444	GSE107170). Significantly differentially expressed genes from HCC and adjacent
445	tissue data sets were screened using the R software (R version 3.5.0). A higher or
446	lower expression of EFNA4, with a P-value <0.05, was regarded as the threshold. The
447	data for the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
448	(GO) analyses were obtained from the correlation analysis among EFNA4 and other
449	relative genes in TCGA or GEO database (R>0.3 , P<0.05).
450	
451	Antibodies
452	Antibodies against EFNA4 (19685-1-AP), E-cadherin (60335-1-Ig), N-cadherin
453	(66219-1-Ig), vimentin (10366-1-AP), EPHA2 (66736-1-Ig), and GSK3β
454	(22104-1-AP) were purchased from Proteintech (Wuhan, China). Antibodies against
455	β-catenin (#8480), AKT (#4691), phospho-AKT (Ser473) (#4060), phospho-GSK3β

456	(Ser9) (#9323), and EPHA2 (#6997) were obtained from Cell Signaling Technology
457	(Beverly, MA, USA). Antibodies against Ki67 (ab16667), PIK3R2 (ab180967) and
458	CTCF (ab128873) were obtained from Abcam (Cambridge, MA, USA). The antibody
459	against GAPDH (AP0063) was purchased from Bioworld Technology (Bloomington,
460	MN, USA). Human EFNA4 Antibody (MAB3692) was purchased from Bio-Techne
461	(Minneapolis, MN, USA); phospho-EPHA2 (Ser897) (AP1082) and phospho-EPHA2
462	(Tyr772) (AP0817) were purchased from ABclonal Technology (Wuhan, China).
463	Monoclonal anti-FLAG M2 antibody (1804) was obtained from Merck KGaA
464	(Darmstadt, Germany).
465	
166	Call culture and transfections

466 Cell culture and transfections

- 467 The HCC cell lines Hep G2, Hep 3B, Huh7, and MHCC-97H, as well as normal
- 468 hepatic epithelial cell line (LO2) were obtained from Zhong Qiao Xin Zhou
- 469 Biotechnology (Shanghai, China). All cells were cultured in cell culture dishes
- 470 (Guangzhou Jet Bio-Filtration Co., Ltd, Guangzhou, China) and maintained in
- 471 Dulbecco's modified eagle medium (DMEM) supplemented with 10%
- 472 (volume/volume) fetal bovine serum and 5 mg/ml penicillin/streptomycin at 37°C
- 473 with 5% CO₂. EFNA4-targeting siRNA and scramble control siRNA were purchased
- 474 from Ribobio (Guangzhou, China). EFNA4-targeting sequences were as follows:
- 475 siRNA#1, 5'-GGGCCTCAACGATTACCTA-3'; siRNA#2,
- 476 5'-GGAGAGACTTACTACTACA-3'. PIK3R2-targeting sequences were as follows:
- 477 siRNA#1, 5'-GCACCTATGTGGAGTTCCT-3'; siRNA#2,

- 478 5'-GGCCAGACTCAAGAGAAAT-3'. β-catenin-targeting sequences were as follows:
- 479 siRNA#1, 5'- GCCACAAGATTACAAGAAA-3'; siRNA#2, 5'-
- 480 GACTACCAGTTGTGGTTAA -3'. The overexpression plasmids pcDNA3.1-EFNA4
- 481 as well as the empty vector (pcDNA3.1), were obtained from Sino Biological Inc.
- 482 (Beijing, China). Cell transfection was performed using Lipofectamine 3000 (Thermo
- 483 Scientific, Waltham, MA, USA) according to the instructions provided by the
- 484 manufacturer. The expression level of EFNA4 was detected by quantitative real-time
- 485 polymerase chain reaction (qRT-PCR).
- 486

487 Assembly of EFNA4 lentivirus

- 488 The EFNA4-overexpressing lentivirus and the empty vector lentivirus were packaged
- 489 by OBiO Technology (Shanghai, China), and cell transduction was performed
- 490 according to the instructions provided by the manufacturer. Stable cells were selected

491 using medium containing 2 μ g/ml puromycin.

492

493 Total RNA extraction and qRT-PCR

494 Total RNA was extracted using a cell total RNA Isolation kit (Foregene, Chengdu,

495 China) according to the instructions provided by the manufacturer. RNA samples were

- 496 subsequently reverse transcribed using the PrimeScript RT reagent kit (Takara
- 497 Biomedical Technology (Beijing) Co., Beijing, China) and amplified by qRT-PCR
- 498 with a LightCycler480 II system (Roche, Basel, Switzerland) using TB Green premix
- 499 ExTaq II (Takara Biomedical Technology (Beijing) Co., Beijing, China). The

- 500 expression levels were normalized to those of β -actin, and the relative expression
- 501 levels were calculated using the $2^{-\Delta\Delta^{Ct}}$ method. The following primer sequences were
- 502 used: EFNA4: 5'-GAGCTGGGCCTCAACGATT-3' (forward),
- 503 5'-GCTCACAGAATTCGCAGAAGAC-3' (reverse); PIK3R2:
- 504 5'-CTAGCAAGATCCAGGGCGAG-3' (forward),
- 505 5'-ACAACGGAGCAGAAGGTGAG-3' (reverse); β-catenin: 5'-
- 506 CTGAGGAGCAGCTTCAGTCC-3'(forward), 5'-ATTGCACGTGTGGCAAGTTC-3'
- 507 (reverse); β-actin: 5'-TGGCACCCAGCACAATGAA-3'(forward), 5'-
- 508 CTAAGTCATAGTCCGCCTAGAAGCA-3' (reverse).

509

- 510 **5-ethynyl-2'-deoxyuridine (EdU) proliferation assay**
- 511 EdU proliferation assay was performed with the Cell-Light EdU Apollo 567 in vitro
- 512 Imaging Kit (RiboBio, Guangzhou, China). Briefly, all cells were inoculated into
- 513 96-well plates (1×10^4 cells per well) after transfection with siRNA or plasmid for 24 h,
- and EdU staining was performed according to the instructions provided by the
- 515 manufacturer. The number of EdU-positive cells was counted using an inverted
- 516 fluorescence microscope (Olympus (China) co., Beijing, China) in three random

517 fields.

518

519 Cell cycle assay

- 520 Cell cycle assay was performed using the cell cycle staining kit (MultiSciences
- 521 (Lianke) Biotech Co., Ltd., Hangzhou, China) according to the instructions provided

522	by the manufacturer. The DNA content was analyzed by FACS calibre flowcytometry
523	(BD Biosciences, Franklin Lakes, NJ, USA), and the percentages of cells within each
524	phase of the cell cycle were determined using the ModFit LT V4.1.7 software (Verity
525	Software House, Topsham, ME, USA).
526	
527	Cell wound-healing and migration assays
528	The cell wound-healing assay was performed as follows. Cells were seeded and
529	grown into a confluent monolayer in six-well plates. Subsequently scratches were
530	generated using a pipette tip. After wounding, the cell migration process was
531	visualized using a microscope (Olympus (China) co., Beijing, China) at 0, 24, 48 h.
532	Cell migration was assessed through Transwell assays. Briefly, cells in serum-free
533	DMEM were seeded on a membrane (pore size: 8.0 μ m) in a 24-well plate (1×10 ⁶
534	cells per well). DMEM medium containing 10% fetal bovine serum was added to the
535	lower chamber of each well. After incubation for 24 h, cells in the upper chamber
536	were removed using a cotton swab and the cells that had reached the underside of the
537	membrane were fixed and stained with crystal violet (0.1% in methylalcohol) for 15
538	min. The cells located on the underside of the filter (three fields/filter) were counted.
539	
540	Immunohistochemistry (IHC)

541 Liver cancer tissue arrays (HLivH180Su15) were purchased from Shanghai Outdo

542 Biotech Co, Ltd (Shanghai, China). The IHC test kit (PV-9000) for EFNA4 protein

543 expression analysis was purchased from ZsBio (Beijing, China) and utilized

according to the instructions provided by the manufacturer. Scores <4 and \geq 4 were
classified as negative and positive, respectively. Moreover, for cancer tissues scores
ranging $0-6$ and >6 were indicative of low and high expression, respectively.
Illumina Genome Analyzer IIx
The Illumina $HiSeq^{TM}$ sequence was commissioned by Guangzhou Huayin Medical
Laboratory Center (Guangzhou, China). MHCC-97H cells transfected with
EFNA4-targeting sequences or the negative control sequences were used for total
RNA extraction; each group was analyzed using three individual samples.
Western blotting
Proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
on 10% or 12.5% precast gels (Epizyme Biotech, Shanghai, China), transferred to
polyvinylidene fluoride membranes, blocked with 5% bovine serum albumin for 1 h
at room temperature, and incubated with primary antibodies for 12 h at 4°C.
Subsequently, membranes were stained with secondary antibodies conjugated with
horseradish peroxidase (Bioworld Technology, Bloomington, MN, USA) at 37°C for 1
h. An enhanced chemiluminescence reagent (Millipore Corp., Billerica, MA, USA)
was used to visualize the bands, which were detected using the Minichemi
chemiluminescence Imaging System (SageCreation Science Co, Beijing, China).

565 Coimmunoprecipitation

566	Coimmunoprecipitation was performed using a Pierce [™] Co-Immunoprecipitation Kit
567	(Thermo Scientific, Waltham, MA, USA), according to the instructions provided by
568	the manufacturer. The final immune complexes were analyzed by western blotting.
569	
570	Immunofluorescence co-localization analysis
571	Cells were inoculated into 48-well plate (2×10^4 cells per well) after transfection with
572	EFNA4 plasmid for 24 h. The cells were then fixed with 4% paraformaldehyde and
573	incubated with corresponding antibodies and DAPI. All results were photographed by
574	a confocal laser microscope (Carl Zeiss, Oberkochen, Germany).
575	
576	Chromatin immunoprecipitation
577	The PIK3R2 promoter region sequence was searched in the Ensembl database.
578	JASPAR bioinformatics tools was used for predicting the CTCF binding sites on
579	PIK3R2 promoter region. Chromatin immunoprecipitation was then performed using
580	a Pierce TM Agarose ChIP Kit (Thermo Scientific, Waltham, MA, USA), according to
581	the instructions provided by the manufacturer, using anti-CTCF or IgG antibody. The
582	CTCF bound chromatin was specifically amplified by PCR and analyzed by agarose
583	electrophoresis or qRT-PCR analysis. The following PCR-specific primers sequences
584	were used: CTCF: 5'-TTCAACCCTGGCTTTCTCCG-3' (forward),
585	5'-GTTTAGACCCAGAGGCGACC-3' (reverse).
586	

587 Half maximal inhibitory concentration (IC₅₀) and Cell Counting Kit-8 (CCK8)

588	assay
589	NVP-BHG712 (S2202) was obtained from Selleck Chemicals (Shanghai, China).
590	CCK8 was purchased from Dojindo Laboratories (Mashikimachi, Japan). Cells were
591	suspended into 96-well plates (3,000 cells per well); when the cells adhered to the
592	plate, inhibitor was added according to the concentration gradient.
593	Spectrophotometric absorbance at 450 nm was measured according to the instructions
594	provided by the manufacturer. Each group was tested at 24, 48, and 72 h.
595	
596	Mouse xenograft model
597	The protocols for the mouse experiments conformed to international regulations for
598	animal care and maintenance and were approved by the Institutional Animal Ethics
599	Committee, Experimental Animal Center of Guilin Medical University.
600	
601	An orthotropic transplantable HCC implantation model in mice was established to
602	investigate the effect of EFNA4 on intrahepatic metastasis in vivo. Moreover, a
603	subcutaneous tumor model was established to explore the effect of EFNA4 on tumor
604	growth. Female nude mice (age: 6 weeks, weight: ~18 g) were purchased from Hunan
605	SJA Laboratory Animal Co.,Ltd (Hunan, China). Briefly, 3×10 ⁶ HepG2 or Huh7 cells
606	overexpressing EFNA4 or the empty vector control were used for subcutaneous tumor
607	injection. Furthermore, 2×10^6 HepG2 cells overexpressing EFNA4 or the empty
608	vector control were used for hepatic capsule injection. The subcutaneous tumor model
609	mice were euthanized at 21 days to evaluate the size of the tumors, while those of the

610	orthotropic transplantable HCC implantation model were euthanized 30 days later to
611	enumerate the liver metastasis nodules. All tissues were photographed with an
612	inverted fluorescence microscope (Olympus (China) co., Beijing, China). Following
613	extraction, liver or tumor tissues were fixed in 4% paraformaldehyde. Formalin-fixed,
614	paraffin-embedded sections from each liver tissue sample were stained routinely with
615	hematoxylin-eosin (HE) and antibodies against Ki-67, N-cadherin, or E-cadherin.
616	
617	Statistical analysis
618	Each in vitro experiment was performed in at least three independent replicates. The
619	results are presented as the mean \pm standard deviation. Student's t-test was used for
620	analysis. Overall survival (OS), progression-free survival (PFS) and disease-free
621	survival (DFS) were determined by Kaplan-Meier survival analysis or Gene
622	Expression Profiling Interactive Analysis. ¹⁰ A χ^2 test or Fisher's exact test was utilized
623	to assess the relationship between the expression of EFNA4 and clinicopathological
624	features. All statistical analyses were performed with GraphPad Prism6 (GraphPad
625	Software, San Diego, CA, USA). All statistical tests were two-sided and P<0.05,
626	P<0.01, or P<0.001 denoted statistical significance.
627	

628 ETHICS APPROVAL

629 The animal experimental processes were approved by the Ethnic Committee of Guilin630 Medical University hospital and conducted in strict accordance to the standard of the

631 Guide for the Care and Use of Laboratory Animals published by the Ministry of

632 Science and Technology of the People's Republic of China in 2006.

633 ACKNOWLEDGMENTS

- 634 The work was supported by the National Natural Science Foundation of China (grant
- nos. 81572797 and 81872251); Natural Science Foundation of Guangdong Province
- 636 (grant nos. 2018A030313730, 2020A1515010093 and 2021A1515012104); Project of
- 637 Traditional Chinese Medicine Bureau of Guangdong Province, China (grant no.
- 638 20203006); Science and Technology Program of Guangzhou, China (grant no.
- 639 202002030075); and Beijing Xisike Clinical Oncology Research Foundation (grant no.
- 640 Y-2019Genecast-021).
- 641

642 AUTHOR CONTRIBUTIONS

- 643 Lin.J.H., Zeng.C.T. designed the study, completed the experiment, collated the data
- and contributed to modifying the manuscript. Lin.J.H. produced the initial draft of the
- 645 manuscript. Li.A.M., Chen.F.S. designed the study, provided research funds and be
- 646 responsible for the revision of the entire manuscript. Zhang.J.K., Song.Z.H., Qi.N.,
- 647 Liu.X.H., Zhang.Z.Y. all participated in the course of the experiment. All authors have
- 648 read and approved the final submitted manuscript.
- 649

650 CONFLICTS OF INTEREST

- 651 The authors have declared no conflicts of interest.
- 652

653 **References:**

1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. 29

655		Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality
656		worldwide for 36 cancers in 185 countries <i>CA Cancer I Clin</i> 2018: 68 : 394-424
657	2	Unified nomenclature for Eph family receptors and their ligands, the ephrins
658		Eph Nomenclature Committee <i>CELL</i> 1997: 90 : 403
659	3	Pasquale E B Eph receptors and ephrins in cancer: bidirectional signalling and
660	5.	beyond NAT REV CANCER 2010: 10: 165-180
661	4	Daar I O Non-SH2/PDZ reverse signaling by ephrins SEMIN CELL DEV
662		<i>BIOL</i> 2012: 23: 65-74.
663	5.	Miao, H., Gale, N. W., Guo, H., Oian, J., Petty, A., Kaspar, J., Murphy, A. J.,
664	01	Valenzuela, D. M., Yancopoulos, G., and Hambardzumvan, D.et al. EphA2
665		promotes infiltrative invasion of glioma stem cells in vivo through cross-talk
666		with Akt and regulates stem cell properties. <i>ONCOGENE</i> 2015: 34 : 558-567.
667	6.	Burleigh, A., McKinney, S., Brimhall, J., Yap, D., Eirew, P., Poon, S., Ng, V.,
668		Wan, A., Prentice, L., and Annab, L.et al. A co-culture genome-wide RNAi
669		screen with mammary epithelial cells reveals transmembrane signals required
670		for growth and differentiation. <i>BREAST CANCER RES</i> .2015; 17 : 4.
671	7.	Fujiwara, H., Nishioka, Y., Matsumoto, H., Suginami, K., Horie, A., Tani, H.,
672		Matsumura, N., Baba, T., Sato, Y., and Araki, Y.et al. Eph-ephrin A system
673		regulates human choriocarcinoma-derived JEG-3 cell invasion. <i>INT J GYNECOL</i>
674		CANCER.2013; 23 : 576-582.
675	8.	Aasheim, H. C., Munthe, E., Funderud, S., Smeland, E. B., Beiske, K., and
676		Logtenberg, T. A splice variant of human ephrin-A4 encodes a soluble molecule
677		that is secreted by activated human B lymphocytes. BLOOD.2000; 95: 221-230.
678	9.	Garrido-Laguna, I., Krop, I., Burris, H. R., Hamilton, E., Braiteh, F., Weise, A.
679		M., Abu-Khalaf, M., Werner, T. L., Pirie-Shepherd, S., and Zopf, C. J.et al.
680		First-in-human, phase I study of PF-06647263, an anti-EFNA4 calicheamicin
681		antibody-drug conjugate, in patients with advanced solid tumors. INT J
682		CANCER.2019; 145: 1798-1808.
683	10.	Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. GEPIA: a web server
684		for cancer and normal gene expression profiling and interactive analyses.
685		NUCLEIC ACIDS RES.2017; 45: W98-W102.
686	11.	Trinidad, E. M., Ballesteros, M., Zuloaga, J., Zapata, A., and Alonso-Colmenar,
687		L. M. An impaired transendothelial migration potential of chronic lymphocytic
688		leukemia (CLL) cells can be linked to ephrin-A4 expression. BLOOD.2009;
689		114 : 5081-5090.
690	12.	Jiang, Y., Suo, G., Sadarangani, A., Cowan, B., and Wang, J. Y. Expression
691		profiling of protein tyrosine kinases and their ligand activators in leiomyoma
692		uteri. SYST BIOL REPROD MED.2010; 56: 318-326.

- Trinidad, E. M., Zapata, A. G., and Alonso-Colmenar, L. M. Eph-ephrin
 bidirectional signaling comes into the context of lymphocyte transendothelial
 migration. *Cell Adh Migr*.2010; 4: 363-367.
- Martiny-Baron, G., Holzer, P., Billy, E., Schnell, C., Brueggen, J., Ferretti, M.,
 Schmiedeberg, N., Wood, J. M., Furet, P., and Imbach, P. The small molecule
 specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven
 angiogenesis. *ANGIOGENESIS*.2010; 13: 259-267.
- 15. Cheng, Y., Ping, J., and Chen, J. Identification of Potential Gene Network
 Associated with HCV-Related Hepatocellular Carcinoma Using Microarray
 Analysis. *PATHOL ONCOL RES*.2018; 24: 507-514.
- 703 16. Zhao, J. R., Cheng, W. W., Wang, Y. X., Cai, M., Wu, W. B., and Zhang, H. J.
 704 Identification of microRNA signature in the progression of gestational
 705 trophoblastic disease. *CELL DEATH DIS*.2018; **9**: 94.
- Huang, C., Yuan, W., Lai, C., Zhong, S., Yang, C., Wang, R., Mao, L., Chen, Z.,
 and Chen, Z. EphA2-to-YAP pathway drives gastric cancer growth and therapy
 resistance. *INT J CANCER*.2020; **146**: 1937-1949.
- 18. Li, J. Y., Xiao, T., Yi, H. M., Yi, H., Feng, J., Zhu, J. F., Huang, W., Lu, S. S.,
 Zhou, Y. H., and Li, X. H.et al. S897 phosphorylation of EphA2 is indispensable
 for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and
 stem properties. *CANCER LETT*.2019; **444**: 162-174.
- 713 19. Chen, Z., Liu, Z., Zhang, M., Huang, W., Li, Z., Wang, S., Zhang, C., Dong, B.,
 714 Gao, J., and Shen, L. EPHA2 blockade reverses acquired resistance to afatinib
 715 induced by EPHA2-mediated MAPK pathway activation in gastric cancer cells
 716 and avatar mice. *INT J CANCER*.2019; **145**: 2440-2449.
- Dunne, P. D., Dasgupta, S., Blayney, J. K., McArt, D. G., Redmond, K. L., Weir,
 J. A., Bradley, C. A., Sasazuki, T., Shirasawa, S., and Wang, T.et al. EphA2
 Expression Is a Key Driver of Migration and Invasion and a Poor Prognostic
 Marker in Colorectal Cancer. *CLIN CANCER RES*.2016; 22: 230-242.
- Cariaga-Martinez, A. E., Cortes, I., Garcia, E., Perez-Garcia, V., Pajares, M. J.,
 Idoate, M. A., Redondo-Munoz, J., Anton, I. M., and Carrera, A. C.
 Phosphoinositide 3-kinase p85beta regulates invadopodium formation. *BIOL OPEN*.2014; 3: 924-936.
- Kumar, A., Redondo-Munoz, J., Perez-Garcia, V., Cortes, I., Chagoyen, M., and
 Carrera, A. C. Nuclear but not cytosolic phosphoinositide 3-kinase beta has an
 essential function in cell survival. *MOL CELL BIOL*.2011; **31**: 2122-2133.
- Cortes, I., Sanchez-Ruiz, J., Zuluaga, S., Calvanese, V., Marques, M., Hernandez,
 C., Rivera, T., Kremer, L., Gonzalez-Garcia, A., and Carrera, A. C. p85beta
 phosphoinositide 3-kinase subunit regulates tumor progression. *Proc Natl Acad*

738 LONGEV.2017; 2017: 4629495. 26. Xu, D., Yang, F., Yuan, J. H., Zhang, L., Bi, H. S., Zhou, C. C., Liu, F., Wang, 739 F., and Sun, S. H. Long noncoding RNAs associated with liver regeneration 1 740 accelerates hepatocyte proliferation during liver regeneration by activating 741 742 Wnt/beta-catenin signaling. HEPATOLOGY.2013; 58: 739-751. 743 27. Damelin, M., Bankovich, A., Park, A., Aguilar, J., Anderson, W., Santaguida, M., 744 745 746 747 CANCER RES.2015; 21: 4165-4173. 748 749 **Figure Legends** 750 Figure 1 EFNA4 expression is associated with poor prognosis in liver cancer. (A) 751 TCGA and two Gene Expression Omnibus data sets (GSE121248 and GSE107170) 753 were downloaded for EFNA4 expression analysis. EFNA4 was elevated in HCC tissues of TCGA dataset (n=371) compared with adjacent tissues (n=50). ***p < 1754 0.001. (B) Correlation analysis of clinical T staging and EFNA4 expression in TCGA 755 756 database. (C) Kaplan–Meier analysis of overall survival and progression-free survival staining scores (E) of EFNA4 expression in 90 pairs of HCC and adjacent tissues, 759 scale bar, 100 µm. (F and G) EFNA4 expression in hepatocellular carcinoma cell 760 lines and normal hepatic epithelial cell line at both the RNA and protein levels by

- 731 Sci U S A.2012; 109: 11318-11323.
- 732 24. Ito, Y., Hart, J. R., Ueno, L., and Vogt, P. K. Oncogenic activity of the 733 regulatory subunit p85beta of phosphatidylinositol 3-kinase (PI3K). Proc Natl 734 Acad Sci U S A.2014; 111: 16826-16829.
- 735 25. Mancinelli, R., Carpino, G., Petrungaro, S., Mammola, C. L., Tomaipitinca, L., Filippini, A., Facchiano, A., Ziparo, E., and Giampietri, C. Multifaceted Roles of 736 GSK-3 in Cancer and Autophagy-Related Diseases. OXID MED CELL 737

Aujay, M., Fong, S., Khandke, K., and Pulito, V.et al. Anti-EFNA4 Calicheamicin Conjugates Effectively Target Triple-Negative Breast and Ovarian Tumor-Initiating Cells to Result in Sustained Tumor Regressions. CLIN

- among 370 patients with HCC. (D and E) Representative IHC images (D) and average 757
- 758

761 quantitative real-time PCR (F) and western blotting (G).

763	Figure 2 EFNA4 enhances the replication and proliferation of HCC cell lines in
764	vitro and in vivo. (A) Expression of EFNA4 in EFNA4-overexpressing Hep3B and
765	Huh7 cells, as detected by quantitative real-time PCR assays. (B and C) The
766	representative images (B) and quantitative data (C) of the EdU assay in Hep3B and
767	Huh7, scale bar, 50 μ m. (D and E) Representative images (D) and quantitative data (E)
768	from the flow cytometry assays. (\mathbf{F} and \mathbf{G}) Representative images (G) and
769	quantitative data (F) of the subcutaneous tumor model. *p < 0.05, **p < 0.01, ***p <
770	0.001. (H) Representative images of HE staining and IHC staining of KI67, scale bar,
771	50 μm.
772	
773	Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B)
773 774	Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B) Representative images and quantitative analysis of cell migration based on
773 774 775	Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B)Representative images and quantitative analysis of cell migration based onwound-healing assays, scale bar, 200 μ m. *p < 0.05, **p < 0.01, ***p < 0.001. (C and
773 774 775 776	 Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B) Representative images and quantitative analysis of cell migration based on wound-healing assays, scale bar, 200 µm. *p < 0.05, **p < 0.01, ***p < 0.001. (C and D) Representative images and quantitative analysis of cell migration based on
773 774 775 776 777	Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B) Representative images and quantitative analysis of cell migration based on wound-healing assays, scale bar, 200 µm. *p < 0.05, **p < 0.01, ***p < 0.001. (C and D) Representative images and quantitative analysis of cell migration based on Transwell assays, scale bar, 100 µm. (E) Analysis of EMT markers by western
773 774 775 776 777 778	Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B) Representative images and quantitative analysis of cell migration based on wound-healing assays, scale bar, 200 µm. *p < 0.05, **p < 0.01, ***p < 0.001. (C and D) Representative images and quantitative analysis of cell migration based on Transwell assays, scale bar, 100 µm. (E) Analysis of EMT markers by western blotting in EFNA4 overexpression cell lysates. (F and G) Representative images and
773 774 775 776 777 778 779	Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B)Representative images and quantitative analysis of cell migration based onwound-healing assays, scale bar, 200 µm. *p < 0.05, **p < 0.01, ***p < 0.001. (C and
773 774 775 776 777 778 779 780	Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B) Representative images and quantitative analysis of cell migration based on wound-healing assays, scale bar, 200 µm. *p < 0.05, **p < 0.01, ***p < 0.001. (C and D) Representative images and quantitative analysis of cell migration based on Transwell assays, scale bar, 100 µm. (E) Analysis of EMT markers by western blotting in EFNA4 overexpression cell lysates. (F and G) Representative images and quantitative analysis of the orthotropic transplantable hepatocellular carcinoma implantation model; the ellipse represents the site of tumor implantation and the arrow
 773 774 775 776 777 778 779 780 781 	Figure 3 EFNA4 promotes EMT and migration in vitro and in vivo. (A and B)Representative images and quantitative analysis of cell migration based onwound-healing assays, scale bar, 200 µm. *p < 0.05, **p < 0.01, ***p < 0.001. (C and

- 783 HE staining and IHC staining of N-cadherin and E-cadherin, scale bar, 50 μm.
- 784

785	Figure 4 The EFNA4-EPHA2-PIK3R2/GSK3β/β-catenin axis promotes DNA
786	replication and migration of HCC cells. (A) Venn diagram of the overlap analysis
787	of EFNA4-related molecules in TCGA database (R >0.2, P<0.05) and the results of
788	high-throughput sequencing. (B – D) Heatmap (B), correlation analysis (C), and
789	STRING online analysis (D) of the results of the overlap analysis. (E) Analysis of the
790	level of EPHA2 phosphorylation by western blotting using Hep3B cell lysates. (\mathbf{F})
791	EFNA4-EPHA2-PIK3R2 interactions were analyzed by coimmunoprecipitation
792	experiments using Hep3B cell lysates, with either an antibody against FLAG-EFNA4
793	EPHA2, or PIK3R2; interactions were revealed by western blotting. (G) Analysis of
794	the levels of downstream molecules by western blotting using EFNA4-knockdown
795	and EFNA4-overexpressing cell lysates.
796	
797	Figure 5 PIK3R2 knockdown reverses the effect of EFNA4 on the proliferation

798and metastasis of HCC cells. (A) PIK3R2 knockdown in EFNA4-overexpressing799Hep3B and Huh7 cells, as detected by quantitative real-time PCR assays. *p < 0.05,</td>800**p < 0.01, ***p < 0.001. (B and C) Representative images and quantitative analysis</td>801of cell migration in EFNA4-overexpressing Hep3B and Huh7 cells after knockdown802of PIK3R2 based on Transwell assays, scale bar, 100 μ m. (D and E) Representative803images and quantitative analysis of cell migration in EFNA4 overexpressing Hep3B804and Huh7 cells after knockdown of PIK3R2 based on wound-healing assays, scale bar,

805	200 μ m. (F and G) Representative images and quantitative data of EdU assay in
806	EFNA4-overexpressing Hep3B and Huh7 cells after knockdown of PIK3R2, scale bar,
807	50 μ m, (H) Analysis of the expression of downstream molecules by western blotting
808	using PIK3R2-knockdown and EFNA4-overexpressing cell lysates.
809	
810	Figure 6 Inhibition of EPHA2 phosphorylation reverses the effect of EFNA4 on
811	downstream molecules of HCC cells and a feedback loop was existed among
812	PIK3R2, GSK3 β and β -catenin. (A) The result of the half maximal inhibitory
813	concentration assay of NVP-BHG712 in Hep3B cells. (B) The result of the CCK-8
814	assay of NVP-BHG712 in Hep3B cells. (C) Analysis of the expression of downstream
815	molecules by western blotting using different concentrations of NVP-BHG712 in
816	EFNA4-overexpressing Hep3B cell lysates. (D) Expression of PIK3R2 in
817	β -catenin-knockdown HCC cells, *p < 0.05, **p < 0.01, ***p < 0.001. (E) Analysis of
818	the levels of downstream molecules by western blotting using β -catenin-knockdown
819	cell lysates in Hep3B. (\mathbf{F} and \mathbf{G}) quantitative real-time PCR and PCR gel exhibiting
820	amplification of CTCF-binding site after ChIP assay using HepG2 or Hep3B cell
821	lysates, with either an antibody against CTCF or IgG.
822	
823	Figure 7 Schematic diagram shows the mechanism between EFNA4 and
824	PIK3R2/GSK3β/β-catenin positive feedback loop. Overexpression of EFNA4 in
825	HCC would active EPHA2 by phosphorylating at Ser897. Moreover, PIK3R2 interact

- HCC would active EPHA2 by phosphorylating at Ser897. Moreover, PIK3R2 interact
- 826 with EPHA2 and promote the phosphorylation of GSK-3 β at Ser9, thus accelerating

- 827 β -catenin transportation to the nucleus and activating CTCF, which leading to an
- 828 increase of PIK3R2.

EFNA4 is an oncogene that negatively relates to the clinical prognosis in HCC patients. While abnormal expression of EFNA4 would contribute to HCC proliferation and migration by activating GSK3 β - β -catenin-PIK3R2 positive feedback loop. Thus, clarifying the mechanism of EFNA4 would be helpful for providing a new therapeutic target for HCC patients.

Hep3B

