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Summary 

Resistance to current therapies is common for Pancreatic cancer and hence novel treatment options are 

urgently needed. In this work, we developed and validated a computational method to select synergistic 

compound combinations based on transcriptomic profiles from both the disease and compound side, 

combined with a pathway scoring system, which was then validated prospectively by testing 30 

compounds (and their combinations) on PANC-1 cells. Some compounds selected as single agents 

showed lower GI50 values than the standard of care, gemcitabine. Compounds suggested as 

combination agents with standard therapy gemcitabine based on the best performing scoring system 

showed on average 2.82-5.18 times higher synergies compared to compounds that were predicted to be 

active as single agents. Examples of highly synergistic in-vitro validated compound pairs include 

gemcitabine combined with entinostat, thioridazine, loperamide, scriptaid and saracatinib. Hence, the 

computational approach presented here was able to identify synergistic compound combinations against 

pancreatic cancer cells. 
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Introduction 

Pancreatic cancer is one of the most aggressive human malignancies that is commonly diagnosed only 

at an advanced stage.(Li et al., 2004; Stathis and Moore, 2010) Gemcitabine, a nucleoside analogue of 

cytidine, is frequently used for treatment of pancreatic cancer, alone and in  combination with nab-

paclitaxel is a first line treatment in patients with unresectable adenocarcinoma of the pancreas.(Vogl 

et al., 2019) However, the efficacy of gemcitabine is low, with a survival rate after 12 months of only 

18%.(Burris et al., 1997; Muhammad Wasif Saif, 2006; Sultana et al., 2007) To overcome this, drug 

combinations have been explored against pancreatic ductal adenocarcinoma (the most common type of 

pancreatic cancer) to sensitize the cells over the effect of gemcitabine alone increases efficacy of therapy 

and  consequently survival rate.(Jung et al., 2017; Moore et al., 2007; Sultana et al., 2008; Tu et al., 

2017; Yachida and Iacobuzio-Donahue, 2013) Compound combinations may hence provide a treatment 

option with increased efficacy and lower toxicity by targeting several dysfunctional pathways at lower 

doses, while also potentially reducing the likelihood of drug resistance.(Mueller et al., 2009) 

Methodologically, there are various ways of measuring synergy(Meyer et al., 2020; Vlot et al., 2019) 

and the choice of synergy metric directly influences on the interpretation of the combinatorial screen. 

With respect to the data side, large combinatorial screening datasets have recently been published such 

as the Merck combinational screen(O’Neil et al., 2016) with 22,737 experiments of 583 double 

combinations against 39 different cancer cell lines, and the NCI ALMANAC(Holbeck et al., 2017) with 

5,000 pairs of FDA-approved cancer drugs against a panel of 60 well-characterized human tumour cell 

lines. Various combination screenings have been integrated in resources such as DrugComb(Zagidullin 

et al., 2019) with 437,932 pairs. However, while cost and effort have been high for generating such 

data, it is clear that even those currently largest datasets cover drug chemical as well as cancer biological 

space only very partially. Hence, for exploring both chemical and biological spaces efficiently when 

exploring the potential of combination therapies, they need to be at least complemented with 

computational approaches. These approaches can be based on experimental screening data and features 

from the ligand (chemical) side(Preuer et al., 2017; Zhang et al., 2018a), gene (Jeon et al., 2018; 

Kalantarmotamedi et al., 2018; Regan-Fendt et al., 2019), combination of gene expression and chemical 
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features(Zhang et al., 2018b), pathways or biological networks(Gu et al., 2015; Li et al., 2018) as have 

been reviewed in recent articles.(Bulusu et al., 2015) However, one limitation of machine learning based 

methods is that large scale data of compound combination screens, of preferably even the same cancer 

type, is required in the first place to be able to train a model on the data. 

Given that available combination screening data for pancreatic cancer is limited, it would be very 

helpful in practice to be able to predict compound combinations based on monotherapy data alone. 

Large scale gene expression data of monotherapy of compounds on cancer cell lines is available in 

databases such as Connectivity Map (CMap)(Lamb et al., 2006a) and LINCS,(Subramanian et al., 2017) 

and this data has been successfully used in the past for transcriptional drug repositioning of single agents 

in several studies(Jahchan et al., 2013; Landreville et al., 2012; Wei et al., 2006). The underlying 

hypothesis for matching single agent drug treatments to diseases is that if the transcriptional responses 

of a compound is the reverse of a disease gene expression profile that compound has a therapeutic 

potential for treating that particular disease. (Lamb et al., 2006b) In other words, it is expected that 

compound treatments that restores gene expression patterns of a disease to its norm to also restore the 

physiological markers of the disease to the baseline levels.(Wagner et al., 2015) Several methods have 

emerged for such a type of analysis, most of which involve finding anticorrelation of gene signatures 

of compounds and a disease of interest based on the above principle.(Iorio et al., 2012; 

KalantarMotamedi et al., 2021; Lamb, 2007; Sirota et al., 2011) 

Recent studies have attempted to hypothesise, based on transcriptional data of single agents, which 

compounds are likely to be synergistic in combination. Approaches can be categorised in methods that 

take into account similarity of signatures of compound treatments based on gene level (Bansal et al., 

2014; Huang et al., 2019, 2014; Liu and Zhao, 2016; Stathias et al., 2018), target level(Regan-Fendt et 

al., 2019; Yang et al., 2019) as well as pathway(Xu et al., 2018) level. This finding was also confirmed 

in DREAM challenge of synergy prediction.(Hsu et al., 2016) Methods that take into account high 

similarity of signature of compound signatures have been successfully and more extensively validated 

than other approaches. This included an earlier Dream challenge winner(Bansal et al., 2014), 

DrugComboRanker(Huang et al., 2014; S et al., 2021) and SynergySeq(Stathias et al., 2018) approach. 
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In some studies, apart from similarity of signatures, further considerations have been taken into account. 

This includes identifying dissimilarity of compound structures(Liu and Zhao, 2016) as well as maximal 

reversal of disease signature(Huang et al., 2019; Stathias et al., 2018) as further important contributing 

factors in finding more synergistic combinations. Many of such approaches were validated either 

retrospectively or prospectively successfully in several cancers such as lung cancer(Huang et al., 2014) 

and glioblastoma.(Stathias et al., 2018) Target functional similarity is also an appealing approach for 

synergy prediction. This can be quantified by measuring similarity of protein targets on perturbed 

pathways which is useful as it is independent of LINCS data. On the other hand, SynGeNet(Regan-

Fendt et al., 2019) integrates gene expression data, target information and network pharmacology of 

drug and disease for this purpose. It is based on scoring single agents using Connectivity Map approach 

and integrating a network approach to evaluate closeness of drugs known targets to important melanoma 

targets. Moreover, pathway information is additional important resource for synergy prediction with 

limited studies focusing on that. It has been suggested that inhibiting multiple modules of reactivated 

disease signalling pathways is a promising strategy to identify drug combinations that overcome 

resistance.(Xu et al., 2018) 

The current study now proposes, and validates for pancreatic cancer cells, a novel approach to identify 

potentially synergistic compound combinations from monotherapy transcriptional data. We have firstly 

used pathway signatures of compounds (instead of gene signatures), as pathway signatures are more 

robust and comparable across cell lines,(Wang et al., 2019) and secondly have introduced a novel 

hypotheses about which types of pathway dysregulation potentially leads to compound synergy. This 

has been achieved in a two-step process (see Figure 1). In the first step, we identified set of pathways 

that are dysregulated in the PANC-1 cell line compared to pancreatic ductal epithelial cells. Then we 

hypothesised that targeting the dysregulated pathways of the disease efficiently would result in 

identifying compounds with desired disease-modulating effect on PANC-1 cells (Figure 1A). As 

gemcitabine (a current main therapy of pancreatic cancer) was identified in the first step, we then were 

able to elucidate the mechanistic action of gemcitabine on the transcriptional level and identify 

important pathways of the PANC-1 disease signature that the gemcitabine instance in LINCS database 
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reverses (anticorrelated pathways; ACPs) and those pathways where it does not reverse and have 

correlation of pathway signature with disease signature (correlated pathways; CPs). We next 

hypothesised that the CPs were the set of pathways that were contributing to gemcitabine resistance in 

PANC-1, and hence found a matching second drug in the database that would target preferably those 

pathways in the desired manner (i.e., with anticorrelation to the disease signature). This gave rise to the 

identification of two scores, termed Score1 and Score2, related to the first and second instances of 

gemcitabine in the database (Figure 1B). Moreover, pathways that were in the CP pathway set, and 

which were specifically important in PANC-1 compared to other pancreatic cancer cell lines were 

subsequently identified, giving rise to the Res-score (Resistance Score of the PANC-1 cell line). Based 

on those three scores, Score1, Score2, Res-score and some selected pathways, 30 selected candidate 

compounds were experimentally validated in vitro as single agents and in combination with 

gemcitabine, with methodological details and results as described in the following section.  
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Results 

Prediction and experimental validation of single compounds against PANC-1 cells 

Using the transcriptional drug repositioning approach described in methods we interrogated gene 

expression profiles of 20,413 compounds in LINCS(Subramanian et al., 2017) which were applied to 

77 different cell lines using the disease gene expression profiles from the PANC-1 pancreatic cancer 

cell line,(Gysin et al., 2012) compared to human pancreatic ductal epithelial cells.  Among the highest-

scoring compounds, two instances of gemcitabine were ranked 11th and 291st among 201,776 signatures 

in the LINCS database, which serves as a retrospective validation of the approach (given gemcitabine 

is used in the clinic against pancreatic cancer). For prospective validation, candidate compounds were 

identified that were predicted to have growth inhibition effect in the PANC-1 pancreatic cancer cell 

line, which was subsequently validated experimentally in PANC-1 growth inhibition assays. Table 1 

lists the criteria for the selection of each compound along with their experimentally derived GI50 and 

GI90 values. GI90 values were included as PANC-1 is a highly resistant cell line. Amongst the 29 

compounds which have been predicted to inhibit growth of PANC-1 cells, 18 (58%) showed GI50 values 

below 10 µM (see Table 1). Among those, BMS-387032 (GI50=114nM, GI90=218nM), teniposide 

(GI50=546nM, GI90=4,371nM) and actinomycin D (GI50<1nM, GI90=4nM) were active in nanomolar 

concentrations and low GI90 values. (We do not propose all of these compounds as potential therapies, 

but they were found to be true positives purely in the context of the hypothesis we set out to validate.) 

For comparison purposes, the clinically used pancreatic cancer drug, gemcitabine, exhibited a GI50 of 

152nM, but no GI90 value, as it does not reach 90% inhibition even at maximal tested concentrations in 

PANC-1 cells. Hence, the algorithm presented here was successful in identifying active single agents 

in the first part of the validation performed in this study. 

Evaluation of synergy hypothesis on a pathway mechanistic level 

We next selected compounds to be combined with gemcitabine which we predicted to be synergistic 

against the PANC-1 cell line. Given different instances of gemcitabine gave rise to somewhat different 
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gene expression profiles, the synergy scores were calculated separately for the first instance (Score1), 

the second instance (Score2), as well as for the resistance profile of the PANC-1 over other cell lines 

(Res-score). 

The first instance of gemcitabine was ranked 11th against the disease query, which was derived using a 

concentration of 80nM applied on A375 cells for 6 hours. The second instance of gemcitabine was 

ranked 291th, for a concentration of 37nM, which was applied on MCF7 cells for 24 hours. Given the 

large number of 201,776 profiles available, this represents the current therapy being ranked in the top 

0.15%. For the first instance of gemcitabine and using Score1, we observed (Figure 1B) that it, as 

intended, reversed many enriched pathways (Anticorrelated Pathways; ACPs) in the PANC-1 

pancreatic cancer cell line, including (using NCBI BioSystems(Geer et al., 2010a) annotations) PLK1 

signalling events, Resolution of Sister Chromatid Cohesion, Kinesins, Cell Cycle, Phosphorylation of 

Emi 1, and the Hedgehog Signalling Pathway (Figure 2.A, Table S1). However, the transcriptomics 

signature of the compound was showing an (undesired) correlation with the disease in five other 

pathways (Correlated Pathways; CPs), namely Notch signalling, Superpathway of steroid hormone 

biosynthesis, Calcineurin-regulated NFAT-dependent transcription in lymphocytes, Chromosome 

Maintenance and Metabolism pathways (Figure 2B). Among these pathways, Notch signalling has been 

previously identified by literature for its importance in gemcitabine resistance mechanisms, consistent 

with our analysis(Wang et al., 2009). Based on the synergy hypothesis formulated above these pathways 

were hypothesized to be the CPs of the first instance of gemcitabine, which hence needed to be reverted 

by a second compound to achieve synergy, and to desensitize PANC-1 cells to gemcitabine treatment.  

For the second instance of gemcitabine used for the calculation of Score 2, we observed an undesired 

correlation of the following pathways with the PANC-1 signature (CPs): FOXA1 transcription factor 

network, MAPK targets/ Nuclear events mediated by MAP kinases, TGF Beta Signalling Pathway and 

Signalling by Activin. Among these selected pathways MAPK has previously been identified to be 

related to gemcitabine resistance mechanisms (Figure 2C).(Fryer et al., 2011) Hence Score2 rank orders 

compounds based on anticorrelation to the above subset of the transcriptomic signature of disease, 

which was not yet sufficiently attenuated by gemcitabine applied in isolation.  
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As for the calculation of the PANC-1 specific Res-score, we aimed to identify compounds to be paired 

with gemcitabine that show synergy specifically in the PANC-1 cell line, as it is known to be more 

resistant to gemcitabine therapy than the BXPC3, Mia Paca-2, HPAFII and HS766T cell lines.(Espey 

et al., 2011; Fryer et al., 2011) For this purpose, firstly CPs of gemcitabine instances 1 and 2 were 

identified, which represent part of the transcriptomic signature that we deemed to be related to resistance 

(as above for the Score1 and Score2 scores). Secondly, pathways that were specifically dysregulated in 

the PANC-1 signature, compared to the other pancreatic cancer cell lines BXPC3, Mia Paca-2, HPAFII 

and HS766T, were selected (Figure 2F), which were hence hypothesised to be of more relevance for 

resistance of PANC-1 to treatment, compared to the other cell lines (‘resistance pathway signature’). 

This pathway set included (according to NCBI BioSystems) the Notch signalling pathway, the 

Superpathway of steroid hormone biosynthesis and MAPK targets/Nuclear events mediated by MAP 

kinases. Five compounds were selected based on reversal of these three pathways (Figure 2D). 

Moreover, five compounds were selected based on only targeting a few of pathways in the pathway sets 

above (Figure 2E) termed as selected score. All shortlisted compounds based on each scoring system 

are listed in the Table1. All Pathways that contributed in each scoring system are listed in Table S2.  

We can see that all three of our synergy hypothesis, according to Score1, Score 2 and Res-score, give 

plausible mechanistic hypotheses for the selection of compounds for pairing with gemcitabine in order 

to achieve synergy, namely by targeting pathways known to be involved in resistance in this cell line. 

Compound combination selection and retrospective validation 

The highest scoring compounds to show synergy with gemcitabine, according to the Score1, Score2 

and Res-score as outlined above (and in more detail in methods) are listed in Table S3, with scores 

closest to -1 indicating highest predicted synergy. Compounds that have a high negative Score1 with 

literature support for efficacy in combination with gemcitabine (though this does not necessarily 

represent synergy) include berbamine (Score1=-0.88) and masitinib (Score1=-0.76). Berbamine is 

known to improve cytotoxicity of gemcitabine in pancreatic cancer cell lines,(Jin and Wu, 2014) while 

the tyrosine kinase inhibitor masitinib sensitises gemcitabine-refractory pancreatic cancer cell lines in 
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vitro as well as in phase2 clinical trials.(Humbert et al., 2010) On the other hand, for Score2, gossypol 

(Score2=-0.66) and menadione (Score2=-0.65) were exhibiting highly negative values and were also 

supported by literature, since administration of gossypol combined with gemcitabine has been shown 

previously to synergistically inhibit growth of gemcitabine-resistant pancreatic cancer cells with high 

BCL-2 expression.(Wong et al., 2012)  

Compounds with highly negative Res-score include triptolide (Res-score=-0.98 and -0.96 for two 

distinct instances), panobinostat (Res-score=-0.98), belinostat (Res-score=-0.98), fluvastatin (Res-

score=-0.95) and trichostatin-a (-0.96). Out of those compounds, triptolide(Wang and Wenjie Lin, 

2013) (in vitro) as well as belinostat(Chien et al., 2014), fluvastatin(Bocci et al., 2005) and trichostatin-

a(Donadelli et al., 2007) (both in vitro and in vivo) have previously exhibited a synergistic effect with 

gemcitabine in pancreatic cancer cells. Belinostat and panobinostat individually inhibited growth of six 

out of 14 of pancreatic cancer cell lines, including PANC-1, in previous work.(Chien et al., 2014) 

Trichostatin-A and gemcitabine, on the other hand, synergistically inhibited growth and induced 

apoptosis in four pancreatic cancer cell lines and also reduced the tumour mass to 50% of its size in 

nude mice xenografts.(Donadelli et al., 2007) Triptolide was found to enhance apoptosis of gemcitabine 

on the PANC-1 and AsPC-1 pancreatic cancer cell lines in vitro.(Wang and Wenjie Lin, 2013) On the 

mechanistic level, Belinostat alone, and in combination with gemcitabine, also significantly decreased 

growth and increased apoptosis of human pancreatic cancer tumours grown in immune deficient 

mice(Chien et al., 2014). Additionally, fluvastatin has been shown to induce apoptosis in the MIAPaCa-

2 pancreatic cancer cell line, and to enhance the effect of gemcitabine synergistically.(Bocci et al., 2005) 

Combined administration of fluvastatin with gemcitabine on MIAPaCa-2 mouse xenografts has in a 

previous study almost completely suppressed and significantly delayed relapse of tumour growth(Bocci 

et al., 2005). Hence, we can see that there is significant literature support for the different synergy scores 

evaluated here, in particular for the Res-score, both on an empirical and on a mechanistic level. 

Prospective experimental validation of predicted synergistic compound combinations 

16 compounds predicted to show synergy with gemcitabine (according to Score1, Score2, and/or Res-

score) were next selected for prospective experimental validation as listed in Table 1. An additional 13 

compounds had been selected for their predicted activity as single agents, but not in combination, and 
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were screened also in combination with gemcitabine as a baseline for comparison with above scoring 

system (which is a rather high baseline, since compounds were selected for individual activity in the 

first instance already). We also used a Gamma secretase/Notch pathway inhibitor (semagacestat) as a 

positive control of synergy with gemcitabine, since Gamma-secretase inhibitors have been shown 

previously to be synergistic with gemcitabine in pancreatic cancer mouse models.(Cook et al., 2012a) 

Compounds that were selected using Res-score included salmeterol, scriptaid, tacedinaline, triclosan, 

entinostat; Score1 led to selecting entinostat, loperamide, RS-17053, saracatinib and thioridazine; and 

Score2 shortlisted digoxin and TW-37. Five compounds were selected based on a relatively small 

number of important pathways. These included racecadotril, maprotiline, dibenzazepine, Y-134, and 

palbociclib. Racecadotril was selected based on its effect on the Chromosome Maintenance pathway 

(CM) and Folate Metabolism (FoM), while Maprotiline was selected based on reversal of CM. 

Dibenzazepine was selected based on Hedgehog Signaling Pathway (HS) and Fructose and mannose 

metabolism (FrM). Y-134 was selected based on reversal of CM and Superpathway of steroid hormone 

biosynthesis (SS), while Palbociclib was selected due to reversal of MAPK targets/ Nuclear events 

mediated by MAP kinases (MK) pathway, its effect on the HS pathway and strengthening the effect of 

gemcitabine on the Aurora B signaling (AB) pathway. 

Hence in total 30 compounds (16 predicted to by synergistic with gemcitabine, 13 predicted to be active 

as single agents, and a positive control) were experimentally tested in combination with gemcitabine in 

pancreatic cancer cells in vitro to evaluate our synergy hypothesis. 

Drug combination screening 

Among the 16 compounds predicted to have synergy with gemcitabine the following showed higher 

synergy score using the Loewe model(Vlot et al., 2019) (Table 1) with experimental data: entinostat 

(SUM_SYN_WEIGHTED output from Combenefit of 51.5), saracatinib (40), thioridazine (34.1), 

scriptaid (33.3), racecadotril (31.3), tacedinaline (26.5), loperamide (23.2), and dibenzazepine (20.6). 

For comparison, compounds that were predicted to be active as single agents but not show synergy with 
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gemcitabine, when tested in combination with gemcitabine had an average synergy score of 10.15 

(standard deviation of +/- 4.7), and the positive control (the Gamma secretase/Notch pathway inhibitor, 

semagacestat, which is not active as a single agent itself) obtained a synergy score of 27.4 in the Loewe 

model. 

We next compared which of our synergy hypotheses has the highest overall synergy to understand how 

gene expression data could be used best to this end, the results of which are shown in Table 2. To 

evaluate our method to a background distribution, we have also experimentally tested all compounds 

that were predicted to not be synergistic (and active only as single agents)  as a control. In this relative 

comparison we found that compounds that scored highest with Res-score were having on average 2.60 

times higher synergy using the Loewe synergy metric (p-value=0.04) and 3.32 times higher synergy 

using the Bliss synergy metric (p-value=0.08) compared to compounds that were predicted to be active 

only as single agents. Score1 was leading to 2.82 and 5.18 times higher synergies in the Loewe and 

Bliss synergy metrics on average, respectively (p-values= 0.04 and 0.02), compared to predicted single 

agent compounds. Compounds selected using Score2 could not be evaluated using this method, as the 

number of selected compound combinations were limited and the resulting p-values were not 

significant. Loewe, Bliss, ZIP and HAS synergy metrics calculated using SynergyFinder Plus(Zheng et 

al., 2021) tool were also compared for combinations and single agents.  It shows 4.4 times higher 

synergy for Score1 and 2.59 times higher synergy for Res-score using Loewe Synergy metric. 3.43 and 

1.98 times higher synergy is observed using HAS for Score1 and Res-Score respectively. Score-1 and 

Res-score have hence both been validated with respect to their ability to select synergistic compound 

combinations based on the data used in this study. 

To evaluate synergy of experimentally tested compound pairs on PANC-1 cell line, dose-response 

matrices and synergy metrics for top five most synergistic compounds with gemcitabine, namely 

entinostat, loperamide, thioridazine, saracatinib and scriptaid are provided in Figure 3 and next five 

most synergistic combinations namely palbociclib, racecadotril, STK525924, BX795 and semagacestat 

are provided in Figure 4. Figures 3-4 compares dose-response, Bliss, HAS, Loewe, ZIP synergy metrics 

in 2D and Loewe in 3D for top ten most synergistic compound combinations generated using 

SynergyFinder Plus(Zheng et al., 2021) web tool. 
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In all of these experiments, gemcitabine alone on its maximal doses reached cytotoxicity of only 46%. 

As mentioned before semagacestat is a gamma-secretase inhibitor and gamma-secretase inhibitors are 

known to be synergistic with gemcitabine in pancreatic cancer cells(Cook et al., 2012b) and hence this 

compound was chosen as a positive control. This compound does not show any synergy with 

gemcitabine using Bliss and ZIP models on PANC-1 cells (Figure 4E) and just a moderate synergy in 

Loewe and HAS metrics. Its maximal doses increases 46% cytotoxicity of gemcitabine to only 47%. 

All other visualised compounds show stronger synergy than semagacestat with gemcitabine in PANC-

1 cells. Entinostat shows the highest synergy levels in PANC-1 cells. However synergy in entinostat-

gemcitabine pair (Figure 3A) occures at high doses of 5000-7000nM which increases cytotoxicity of 

gemcitabine from 45% to 78% and 86% inthese doses and at dose of10000nM to 89%. Loperamide 

(Figure 3B) shows synergy in wide range of doses of this compound and gemcitabine with cytotoxicity 

increasing from 32% to 71%. Synergy of Thioridazoine based on HSA metric (Figure 3C) occures in 

doses of 100nM and 300nM and 100nM of gemcitabine and cytotoxicity in these doses increases from 

22% to 42% and 52% respectively. Its maximal doses increases cytotoxicity to 81%. Saracatinib (Figure 

3D) at low dose of 300nM and 100nM of gemcitabine increases cytotoxicity of PANC-1 cells from 

41% to 63% and in maximal doses cytotoxicity reaches 71%. Scriptaid (Figure 3E) is mostly synergistic 

in high doses of 3000-10000nM which increases cytotoxicity of gemcitabine from 44% to 70% and 

90% respectively. 

Palbociclidib (Figure 4A) shows synergy with gemcitabine in a wide range of doses from 300nM 

onwards with cytotoxicity increasing from 39% (gemcitabine alone) to 70% in its maximal doses.  

Racecadotril (Figure 4B) shows moderate synergy in wide range of doses increasing cytotoxicity from 

39% to 54%. Racecadotril is inactive as a single agent with cytotoxicity of only 8% at dose of 10000nM. 

STK525924 (Figure 4C) is mostly synergistic at dose of 3000nM and 30nM of gemcitabine, increasing 

cytotoxicity from 28% to 55%. STK525924 also as a single agent is quite inactive with cytotoxicity of 

only 5% on its maximal dose of 10000nM. In case of BX-795 (Figure 4D), synergy occures mainly on 

its low doses of 100-300nM with cytotoxicity increasing from 38% to 57% in dosess as low as 100nM 

with 300nM of gemcitabine. Its maximal cytotoxicity reaches 79%. 3D view of all synergy metrics for 

the top 10 synergistic compounds are provided in Figs S1-14 to complement visualisation in Figures 3-
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4. Figs S1-S5 particularly shows the most synergistic compound combination gemcitabine-entinostat 

on PANC1, HPAFII, K8484, MIA PaCa-2 and TB32048. It is shown that this combination is only 

synergistic on PANC-1 cells. 

To have a better overview of all tested compound combinations in terms of synergy score (Bliss and 

Loewe) and cell sensitivity of all compound pairs are compared in Figure 5. HSA and ZIP metrics vs 

cell sensitivity are provided in Figure S15. Bliss model (Figure 5A) marks combinations of  

STK525924, loperamide, entinostat on PANC-1 and thioridozine as highest synergistic compounds 

among which entinostat, thioridozine and loperamid shows the highest combination cell sensitivity. All 

entinostat-gemcitabine instances on all five mentioned cell lines show highest sensitivity but synergy 

occures only in PANC-1 cells and highest sensitivity occures in TB32048 cell line. loperamide, 

entinostat on PANC-1 and thioridozine are marked as hiehst synergistic in Loewe (Figure 5B), HSA 

(Figure S15A) and ZIP (Figure S15B) models. Loewe (Figure 5B) and HSA (Figure S15A) models 

does not mark STK525924 synergistic at all but it is highly synergistic based on Bliss (Figure 5A) and 

ZIP (Figure S15B) models. 

The combination of entinostat and gemcitabine (Figure S16) shows the highest synergy and cell growth 

inhibition at sub-GI50 concentrations in the PANC-1 cell line (Figure 3A, Figure S16E), but it did not 

show synergy in other human pancreatic cancer cell lines (MIA PaCa-2 and HPAF-II, Figure S16C,A) 

and mouse pancreatic cancer cells (K8484 and TB32048, Figure S16B,D). This is in agreement with 

the selection criterion we used for the Res-score. As the aim of Res-score was to identify pathways that 

are specific in PANC-1 (the most resistant cell line to gemcitabine treatment) and find synergistic 

combinations for this pathway set.  

Entinostat and gemcitabine act synergistically by inducing apoptosis. 

To understand the effects of entinostat combined with gemcitabine on the growth inhibition of PANC-

1 cells, the IncuCyte system was used to obtain real time data on cell growth. It was found that the 

growth rate was significantly reduced by the combination, compared to either single agent (Figure 6A). 

Furthermore, the long-term clonogenic assays confirmed a greater inhibition in the combination than 

with either of single agents (Figure 6B), and elevation of cleaved PARP, cleaved caspase 3 and γH2AX 
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on Western blots demonstrated the induction of apoptosis by the combination (Figure 6C). Hence, we 

conclude that the combination of entinostat and gemcitabine acts synergistically by inducing apoptosis 

in a more efficient manner than either agent alone. 

Entinostat in combination with gemcitabine causes increased cytotoxicity via complementary 

mechanisms, where entinostat arrests cells in the G1 phase and gemcitabine in the S phase. 

To study cell proliferation dynamics and effects on cell division in further detail, the FastFUCCI 

(Fluorescent Ubiquitination-Based Cell Cycle Indicator) system(Koh et al., 2016) and live cell imaging 

was used over a period of three days. In Figure 7 it can be seen that of the 80 DMSO-treated PANC-1 

control cells 76 underwent one to three cell division processes, resulting in 369 cells after three days of 

observation. In the presence of gemcitabine, PANC-1 cells converted from the G1 phase (indicated in 

red, visualizing Cdt1) to the S and G2 phases (indicated in green, visualizing geminin), with the total 

cell number still increasing from 76 to 117, and eventually resulting in S phase arrest in agreement with 

earlier observations (Figure 7B; arrested green fluorescent cells).(Shi et al., 2001)  On the other hand, 

entinostat alone was found to arrest cells in the G1 phase after at least one cell division. Only few cells 

were non-viable with entinostat treatment and 64% (65 out of 102 cells) entered mitosis. Six of them 

failed to divide at mitosis but still proceeded into G1 phase afterwards. In contrast, the combination of 

gemcitabine and entinostat dramatically increased cell death to over 83%. Since each drug interfered at 

different times of cell cycle, combination-treated cells only in few cases survived after a period of three 

days. In this section we were able to show that different complementary mechanisms contribute to the 

observed compound synergy. 

Transcriptional level mechanism of action of synergistic compound pairs based on LINCS data 

In order to rationalize the synergy hypotheses used for selecting compound combinations we discuss 

the induced gene expression changes and pathway signatures according to LINCS data in this section 

in more detail for the most synergistic compounds paired with gemcitabine, namely entinostat, 

thioridazine and loperamide.  
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Entinostat was predicted to have a highly negative Res-score and Score1, reflecting anticorrelation to 

the gemcitabine signature in the Res-score pathway set (the part specific to PANC-1 cells) and Score1 

(the part derived from the first gemcitabine instance); see Figure 2. In the Superpathway of steroid 

hormone biosynthesis pathway HSD17B11 is upregulated by entinostat but downregulated by 

gemcitabine. When looking into the underlying data at the individual gene level, in the Chromosome 

maintenance pathway BRCA1, RFC5, LIG1, POLE2, PCNA are downregulated by entinostat, while 

RFC2, PCNA, RPA2 and LIG1 are upregulated by gemcitabine (Table S4). As opposed to the 

subsequent analyses no literature evidence for those mechanistic underpinnings of synergy could be 

found. Mechanistically, 64% of the cells enter mitosis in the gemcitabine/entinostat combination 

(Figure 5), compared to 15% in the combination of gemcitabine with trichostatin-A(Gaulton et al., 

2012). This is interesting to observe, in particular given it is known that entinostat inhibits HDAC1 to 

a lesser extent (with an IC50 value of 510nM) than trichostatin-A (IC50 of 20nM)(Gaulton et al., 2012), 

so based purely on HDAC1 inhibition the opposite order would be expected. We found that the 

entinostat transcriptional profile in LINCS reverses the CPs (correlated pathways, where the compound 

does not have the intended anticorrelation with the disease signature) of gemcitabine in the chromosome 

maintenance pathway by downregulating BRCA1, RFC5, LIG1, POLE2 and PCNA, while only PCNA 

and POLE2 are downregulated in the gene expression signature of trichostatin-A (Table S4). Hence, 

we hypothesise that the synergistic effect of entinostat with gemcitabine is not just due to HDAC 

inhibition, and that taking systems data into account when trying to decipher compound action provides 

additional information over only looking at activity values against single targets. 

For loperamide, another drug synergistic with gemcitabine in the PANC-1 experiments, PDGFA has 

been found to be upregulated in the gemcitabine signatures and downregulated in the loperamide 

signature. PDGFA is one of the drivers of tumour growth, angiogenesis and metastasis formation in 

Pancreatic Ductal Adenocarcinoma (PDA),(Sahraei et al., 2012) and hence its downregulation plausibly 

contributes to the synergy observed. GADD45A is equally upregulated by gemcitabine but 

downregulated by loperamide. In this context, in p53 mutation positive pancreatic cancer patients, 
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GADD45A was upregulated in patients with lower survival rate, also providing possible support for the 

observations in this work.(Yamasawa et al., 2002)  

Thioridazine downregulates RPA2, FOS and INPP1, which are upregulated in the gemcitabine gene 

signature. High levels of RPA2 expression have been associated with adverse disease progression and 

it may also be a therapeutic potential target for treating colon cancer itself,(Givalos et al., 2007) while 

FOS gene expression has been found to be associated with progression of pancreatic cancer 

tumours.(Guo et al., 2015) INPP1 is highly expressed in aggressive human cancer cells and primary 

high-grade human tumours.(Benjamin et al., 2014) Hence, thioridazine reverses the (undesired) CPs of 

gemcitabine on RPA2, FOS and INPP1, which have been previously shown to be related to adverse 

patient treatment outcomes, also underpinning the rationale of synergy of compound combinations 

validated in this work. 

We next compared similarity of gene expression patterns on the individual gene and pathway level. We 

found that on the gene level. Two instances of gemcitabine are provided in the Table S4. The up 

regulated genes of the two instances have 6.4% Tanimoto similarity (6 shared genes in 94 total unique 

genes) and the down regulated genes have 13.6% Tanimoto similarity (12 shared genes in total 88 

unique genes). Hence, the gene signatures of both compounds are very different from each other. 

However, pathway signatures of gemcitabine instances 1 and 2 have 82.9% correlation together. This 

shows that using pathway signatures we get a more robust signal of specific compounds. 

Hence, among the most synergistic compounds we have identified genes that show anticorrelation 

between transcriptomic changes induced by gemcitabine and the paired compound, providing a 

mechanistic rationale for those observations that in many cases is also supported by clinical evidence.  
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Discussion 

In this work, we presented and validated a novel systematic approach to predict the synergy of 

compound combinations based on transcriptional data and pathway annotations. The synergy 

hypotheses used here were based on the assumption that the transcriptional activity of a second 

compound paired with the main therapy should be anticorrelated to the disease signature not yet 

reverted by the main treatment. Thirty-one compounds were shortlisted in total, among which 13 were 

predicted to be active as single agents only. 16 compounds were predicted to show synergy with 

gemcitabine, while 12 were predicted to be active both as a single agents and combination. For 

reference, we had one positive synergistic control (semagacestat) and one single agent positive control 

(gemcitabine).  

Among the predicted combinations entinostat showed highest synergy (Loewe synergy of 51.5, Bliss 

synergy  of 26.7) with gemcitabine, which was higher than our positive control (Loewe synergy of  27.4, 

Bliss synergy of 8.9). The entinostat-gemcitabine combination was previously (but after the actual 

conductance of the current work) identified as a synergistic combination in pancreatic cancer cells.(Ma 

et al., 2017) Additionally, further novel synergistic pairs including gemcitabine/thioridazine and 

gemcitabine/loperamide were identified. 

While the combination of thioridazine with gemcitabine has been patented before for non-small-cell 

lung carcinoma (NSCLC),(Huang et al., 2016) it is novel in pancreatic cancer as suggested from this 

work. Thioridazine and its family member penfluridol has been shown to cause cell death in pancreatic 

cancer cells via activation of protein phosphatase 2 (PP2A) and to affect protein expression levels  in 

cell cycle regulation, apoptosis, and multiple kinase activities.(Chien et al., 2015) Thioridazine inhibits 

cancer stem cells (CSC) of various origins such as myeloid leukaemia, glioblastoma, lung, liver, ovarian 

and breast cancers.(Chan et al., 2018) It has been effective in vitro by inhibiting CSC spheroid formation 

and inducing apoptosis, and in vivo by reducing xenograft tumour volume in mice. The plasma peak 

concentration (CMax) of thioridazine after a single oral dose of 50 mg reaches 280 nM.(Chigaev et al., 

2015) We have shown in this work that synergy between thioridazine and gemcitabine occurs in a wide 
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range of concentrations of both drugs, including at 100nM and 300nM of thioridazine. While after 

application of 300nM of gemcitabine on PANC-1 cells 60% of the cancer cells were still surviving, 

addition of thioridazine at a concentration of 300nM caused this to drop to 42%. Hence, thioridazine at 

its safe dose increases cell death of PANC-1 cells induced by gemcitabine by 18% in absolute terms (or 

nearly a third in relative terms), which given the PK considerations described here may also translate 

into clinical relevance. 

Another combination with gemcitabine suggested from the current work is loperamide, which is an anti-

diarrheal agent and targets the μ-opioid receptors. Loperamide has been shown to enhance the 

cytotoxicity of doxorubicin and reverse multi-drug resistance in breast cancer cells.(Zhou et al., 2012) 

It has also reversed multi drug resistance to bortezomib in colon cancer cells.(Kim et al., 2019) Here, 

we have shown that it increases cytotoxicity of gemcitabine to PANC-1 cells and shows high synergy 

in a wide range of doses.  

Overall, the computational approach presented here has successfully predicted synergistic compound 

combinations for pancreatic cancer cells using the transcriptional response data of single agents and 

gene expression profiles of cancer cell lines. The method lends itself to mechanistic interpretation and 

it is potentially applicable in other cancer types and beyond. 

Limitations of the Study 

Predicted combinations were validated for PANC-1 cells and only highest synergistic pair was validated 

on five pancreatic cancer cells (PANC-1, MIA PaCa-2, HPAF-II, K8484 and TB32048). It was also 

shown that this pair (Entinostat-gemcitabine) is selectively synergistic only on PANC-1 cells as 

expected due to type of scoring system chosen (Res-score). As one limitation of the work, this 

selectivity on PANC-1 was experimentally proven only for the most synergistic combination and not 

the rest of pairs. 

The computational approach is limited to the compound database used here (LINCS) and can not be 

extended to larger compound databases without having transcriptional data of single agents. LINCS is 

also limited to the 77 cell lines used for generating the data. The cell lines represent the biological space 

used here for measuring compound treatment effect which is not comprehensive. 
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Figure titles and legends 

Figure 1: Predicting compounds active as single agents as well as in combination with gemcitabine 

against pancreatic cancer (PANC-1) cells. A) Gene expression profiles of compounds in LINCS 

database treated on different cell lines with different durations as well as pancreatic cancer cells are 

used as input to the method and annotated with dysregulated pathways. Next, correlation score of these 

pathway signatures is calculated on those pathways that are most enriched in pancreatic cancer cells. 

Finally, the compounds are rank ordered based on their correlation scores. B) For predicting compound 

combinations, the single agent results were used and the first instance of Gemcitabine in the top rank-

ordered single agents were taken. Next, pathways were identified where Gemcitabine instances failed 

to reverse the disease signature. Then, among top results, it was searched for another single agent that 

reversed the pathways of that the first instance and second instances of gemcitabine. This gave raise to 

Score1 and Score2 and novel compounds were selected for experimental validations.  

Figure 2: Pathway signatures of compound combinations predicted to be synergistic, compared 

to those of PANC-1 cells. A) Pathways where the gemcitabine signature is anticorrelated with the 

PANC-1 transcriptomic signature (Anticorrelated Pathways; ACPs). The second compound should also 

anticorrelate with these pathways from the disease signature side for having significant synergy score 

according to the synergy hypothesis employed in this work. Compounds marked with * are shown as 
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they had retrospective validation and the rest of compounds were tested experimentally. Bliss and 

Loewe synergy scores are shown where experimental data was generated in this work for combination 

of the compound with gemcitabine in PANC-1 cells. B) Pathways where the gemcitabine signature for 

instance1 is correlated with the PANC-1 cells signature (Correlated Pathways; CPs). The second 

compound should anticorrelate with these pathways (and hence counteract the undesired part of 

transcriptional dysregulation introduced by the compound) for synergy to be observed. Numbers are z-

scores calculated after enrichment analysis. C) CPs of second instance of gemcitabine and how these 

are reversed by other selected compounds. D) Gene expression of pancreatic cancer cells on set of CP 

pathways for both instance 1 and 2 of gemcitabine are compared. E) A few pathways were selected, and 

compounds based on reversal of each of these selected pathways were selected. (Color coding of 

enrichment scores are consistent in all heatmap plots. Pathway signatures are based on pathway 

enrichment scores calculated for compounds in LINCS.) F) Pathways that were specifically 

dysregulated in PANC-1 were identified for Res-and compounds that reverse the three pathways shown 

were selected. First two pathways on the left of the Res-score are for CP of instance1 of gemcitabine 

and the right most pathway is for CP of instance 2 of gemcitabine. 

Figure 3: Cytotoxicity assay of the most synergistic combinations. PANC-1 cells were treated with 

increasing doses of gemcitabine (x-axis) vs predicted synergistic compounds (y-axis) in an 8 X 8 

concentration checkboard format for 24 hours. Cell viability was determined by measuring the total 

protein content using the sulforhodamine B assays and percentage growth inhibition compared with 

control was provided in the matrix in the right column. From left to right dose-response, Bliss, HAS, 

Lowe, ZIP synergy metrics in 2d heatmat format and Loewe synergy metric in 3D format were 

generated using Synergy Finder web tool. Darker blue color represents high synergy for each 

concentration of each compound in the combination. Synergy and toxicity are presented for 

combination of gemcitabine with A) Entinostat, B) Loperamide, C) Thioridazine, D) Saracatinib and 

E) Scriptaid. Data are represented as mean of three samples. 

 

Figure 4: Cytotoxicity assay of the most synergistic combinations. From left to right dose-response, 

Bliss, HAS, Lowe, ZIP synergy metrics in 2D heatmat format and Loewe synergy metric in 3D format 

for gemcitabine combination with A) Palbociclib, B) Racecadotril, C) STK525924, D) BX795 and 

E)Semagacestat on PANC-1 cells are visualised. Output is generated using SynergyFinder Plus 

webTool. Data are represented as mean of three samples. 

 

Figure 5 Synergy score vs sensitivity score for all experimentally validated compound 

combinations. A)Bliss and B) Loewe synergy metrics vs sensitivity score of experimentally tested 

compound combinations with gemcitabine was visulalised using SynergyFinder Plus web application. 

All pairs are tested on PANC-1 except entinostat-gemcitabine that is tested on five pancreatic cancer 

cell lines namely PANC1, HPAFII, K8484, MIA PaCa-2 and TB32048 as indicated in the figure. Data 

are represented as mean of three samples. 

 

Figure 6: IncuCyte time-lapse imaging, clonogenic assay and Immunoblotting for apoptosis. A) 

Cell proliferation in PANC-1 cells treated as indicated at synergistic concentrations (30nM 

Gemcitabine, 7μM Entinostat). Normalized confluency change was also measured every 3h over a 

period of 84 hours for each single agent and the combination. Confluency was significantly reduced in 

the combination group after 72h. It was found that the growth rate was significantly reduced by the 

combination, compared to either single agent, with clear presence of apoptotic bodies. Data represents 

mean ± SD of 3 replicates, * indicates P < 0.05 and ** indicates significance at P < 0.01 (based on the 

Kruskal-Wallis non-parametric test).  Scale bar (100µm) B) Clonogenic assays. It can be seen that the 

combination of gemcitabine and entinostat showed higher capacity of cells to produce progeny 
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compared to single agent-treated groups. The number of surviving cells drops significantly in the 

combination compared to using each compound individually. Data are represented as mean ± SD, n=3. 

*p≤0.05. C) PANC-1 cells were incubated with synergistic concentrations of 30nM Gemcitabine 

(GEM) and 7μM Entinostat (E) and total proteins were extracted after 24, 48 and 72 hours for Western 

blotting. It can be seen that cleaved PARP and cleaved caspase 3 were elevated by the drug combination, 

indicating apoptosis at 48 and 72 hours. γH2AX, a marker of DNA damage and (later) or apoptosis was 

elevated by gemcitabine by 24 hours but was enhanced by the combination. Protein expression of 

apoptotic markers, cleaved-PARP and cleaved-caspase-3 are significantly increased by the combination 

of gemcitabine and entinostat over time. The increase in protein expression of ɣH2AX indicates that 

DNA damage along with apoptosis is caused by this combination. 

 

Figure 7: Entinostat/Gemcitabine increase cellular cytotoxicity in PANC-1 cells. A) In the control 

group, FastFUCCI PANC-1 cells underwent normal cell division processes. In presence of 

Gemcitabine, S phase arrest was observed, whilst Entinostat blocked the G1 phase at a late time point. 

Fifteen cells were killed with Entinostat treatment and 64% (65 out of 102 cells) seem to enter mitosis, 

but some of them failed to split at mitosis but still go back into G1. On the other hand, 

Gemcitabine/Entinostat dramatically increased cell death given more than 80% of cells died. Since each 

drug interfered different time of cell cycle, combination-treated cells barely survived after three days 

and synergy was observed. (Divisions on Day 0 was from Day 0 to 1, Divisions on Day 3 was from 

Day 0 to 3.) B) Representative images of FastFUCCI PANC-1 cells treated for 72 hours as indicated. 

S/G2-M cells (green) from G1 cells (red) based on fluorescently tagged forms of geminin and Cdt1, 

respectively. Scale bar, 50µm. 
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Tables with titles and legends 

Table 1: Prediction and experimental results for selected single agents (‘S’) and compound combinations (‘C’) according to the different synergy hypotheses (Score1, 

Score2, Res-score and selected). Compounds that were selected to be active as single agents and not based on any synergy scoring hypothesis were marked as ‘S’ and hence 

did not have any synergy prediction score (Score Comb). However, these compounds were tested in combination with gemcitabine experimentally for comparison reason and 

synergy scores were calculated for them. Compounds that were predicted to be active in combination were marked as ‘C’. Single score is predicted score for the compound to 

be active as single agent on PANC-1 cells and Comb Score is predicted score for the compound to be active in combination with gemcitabine based on any of the synergy 

scoring hypothesis identified in Score Type. GI50 and GI90 values for each compound on PANC-1 cells were identified using growth inhibition assays in vitro. Leowe and Bliss 

synergy scores were calculated from experimental data of combination of the compound with gemcitabine using Combenefit software. ZIP, HAS, Loewe and Bliss synergy 

scores were calculated also using SynergyFinder Plus web tool. P-values for each synergy metric, IC50 and cell sensitivity score for combination (CSS) is also provided based 

on SynergyFinder Plus tool. Compound selection criteria is discussed in the Prospective experimental validation of predicted synergistic compound combinations section in the 

Results. Entinostat-gemcitabine combination which was the highest synergistic pair was also tested on four other pancreatic cancer cells (HPAF2, K8484, MIA PaCa2, TB32048). 
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Compound Cell line 
Single/ 

comb 
Score Type 

Comb 

score 

Single 

score 

GI50 

nM. 

GI90 

nM 
Loewe Bliss ZIP 

ZIP 

pValue 
HSA 

HAS 

pValue 
Loewe 

Loewe 

pValue 
Bliss 

Bliss 

pValue 

Ic501 

nM 

Ic502 

nM 
Css 

  Prediction Score GraphPad Prism Combenefit SynergyFinder Plus 

Semagacestat PANC-1 C PC  NA >10,000 >10,000 27.40 8.90 -3.37 0.24 3.69 0.53 3.00 0.62 -3.99 0.48 44.33 9.00 32.78 

Gemcitabine PANC-1 S PC  -0.45 152 >10,000 3.40 0.00            

Scriptaid PANC-1 S&C Res -0.89 -0.33 3218 >10,000 33.30 10.40 -1.67 0.57 5.83 0.53 5.00 0.53 -2.92 0.67 10000.00 28.47 61.35 

Tacedinaline PANC-1 S&C Res -0.84 -0.39 >10,000 >10,000 26.50 8.00 -1.16 0.85 3.71 0.77 2.88 0.82 -1.96 0.84 5851.86 8.60 37.61 

Salmeterol PANC-1 S&C Res -0.84 -0.33 4248 >10,000 14.20 2.10 -5.09 0.08 3.40 0.52 2.88 0.55 -5.49 0.28 5979.96 12.46 34.17 

Triclosan PANC-1 C Res -1.00 -0.28 >10,000 >10,000 13.10 5.20 1.51 0.60 2.48 0.78 2.54 0.77 1.15 0.84 0.00 14.69 20.96 

Entinostat PANC-1 S&C Res/ Score1 -0.78 -0.45 11007 16626 51.50 26.70 11.17 0.10 22.01 0.12 22.17 0.12 11.13 0.19 20000.00 13.63 73.02 

Entinostat HPAF2 NA        -6.91 0.16 -1.37 0.81 -1.84 0.77 -7.83 0.16 20000.00 3.58 66.70 

Entinostat K8484 NA        -1.28 0.76 0.08 0.99 -1.92 0.78 -3.66 0.59 5921.93 1.78 71.90 

Entinostat 
MIA 

PaCa2 
NA        1.27 0.78 1.15 0.89 -1.17 0.86 -0.20 0.97 1000.00 4.13 66.08 

Entinostat TB32048 NA        -1.05 0.76 2.29 0.76 -1.09 0.81 -1.82 0.66 4734.84 3.97 77.38 

Saracatinib PANC-1 S&C Score1 -0.66 -0.33 >10,000 >10,000 40.00 22.10 5.06 0.32 7.99 0.52 6.97 0.56 4.59 0.52 10000.00 20.29 43.58 

Thioridazine PANC-1 C Score1 -0.73 -0.21 9318 16163 34.10 20.30 5.79 0.30 13.07 0.21 12.54 0.22 5.44 0.38 10000.00 24.32 58.56 

Loperamide PANC-1 S&C Score1 -0.71 -0.36 3200 >10,000 23.20 12.10 11.39 0.06 19.77 0.02 18.05 0.03 11.35 0.11 10000.00 11.48 56.55 

RS-17053 PANC-1 S&C Score1 -0.83 -0.39 3154 5275 1.60 0.50 -3.10 0.54 2.76 0.77 0.51 0.96 -4.22 0.55 4307.93 11.95 60.92 

TW-37 PANC-1 C Score2 -0.81 -0.26 372 2376 15.10 1.20 -3.23 0.63 4.93 0.63 3.43 0.72 -3.77 0.65 733.39 12.03 61.11 

Digoxin PANC-1 C Score2 -0.83 -0.21 25 66 6.70 5.30 -1.09 0.83 3.31 0.63 1.77 0.77 -1.57 0.82 30.38 18.88 49.13 

Maprotiline PANC-1 S&C Selected CM  -0.35 >10,000 >10,000 12.10 5.30 -2.27 0.65 2.62 0.71 2.39 0.74 -3.32 0.58 10000.00 6.26 32.32 

Racecadotril PANC-1 S&C 
Selected 

CM&FoM 
 -0.36 >10,000 >10,000 31.30 24.00 5.28 0.23 6.93 0.31 6.51 0.38 5.47 0.25 202.42 2.34 29.39 

Y-134 PANC-1 S&C 
Selected 

CM&SS 
 -0.41 >10,000 >10,000 18.40 6.00 -1.42 0.77 5.19 0.60 3.70 0.71 -2.10 0.73 10000.00 17.91 37.19 

Dibenzazepine PANC-1 S&C 
Selected 

HS&FrM 
 -0.45 8975 13108 20.60 7.30 1.85 0.71 8.53 0.27 7.71 0.42 2.12 0.72 884.54 5.86 58.47 

Palbociclib PANC-1 S&C 
Selected 

MK&AB&HS 
 -0.45 6285 >10,000 7.00 2.90 -0.92 0.93 6.91 0.55 5.47 0.65 -1.17 0.93 10000.00 9.87 48.63 

Actinomycin D PANC-1 S   -0.31 <1 4 18.70 1.30 -2.77 0.40 3.34 0.67 2.46 0.73 -3.84 0.56 1.26 20.55 60.58 

L-168 PANC-1 S   -0.28 >10,000 >10,000 17.20 5.00 -6.55 0.22 -0.49 0.95 -1.20 0.90 -8.12 0.12 10000.00 18.69 42.31 

Clofarabine PANC-1 S   -0.40 >10,000 >10,000 15.40 8.40 -0.30 0.97 4.70 0.46 3.83 0.63 0.40 0.97 3472.36 5.37 33.33 

BX-795 PANC-1 S   -0.40 1619 9207 13.80 0.30 2.95 0.68 9.43 0.42 8.36 0.45 3.06 0.78 1258.68 24.86 48.93 

Teniposide PANC-1 S   -0.45 546 4371 11.60 1.80 -6.96 0.20 2.12 0.73 0.76 0.90 -7.10 0.28 314.06 14.53 56.14 

Ciclopirox PANC-1 S   -0.40 1002 1134 11.00 3.90 2.48 0.69 9.57 0.25 7.04 0.41 2.55 0.77 1292.55 28.12 63.24 

Ursolic acid PANC-1 S   -0.16 >10,000 >10,000 11.00 2.30 -10.80 0.01 -0.96 0.94 -1.83 0.87 -12.99 0.07 2.13 12.53 33.81 

Phloretin PANC-1 S   -0.40 >10,000 >10,000 8.10 8.10 0.75 0.81 1.16 0.83 1.09 0.82 0.75 0.88 10000.00 6.90 24.92 

BMS-387032 PANC-1 S   -0.38 114 218 7.70 1.90 -7.61 0.28 -0.83 0.90 -1.29 0.86 -9.73 0.21 155.43 7.78 53.68 

Serdemetan PANC-1 S   -0.42 3094 >10,000 7.70 3.00 -0.38 0.94 8.96 0.17 5.85 0.37 -0.31 0.96 10000.00 10.15 49.56 

Leelamine PANC-1 S   -0.31 7567 9462 7.20 3.50 -7.80 0.42 1.94 0.87 0.98 0.95 -10.75 0.20 10000.00 14.10 52.10 

STK525924 PANC-1 S   -0.43 6684 11519 7.20 1.40 12.81 0.06 7.57 0.42 6.71 0.45 14.45 0.09 7012.23 8.15 31.38 

Medroxyprogesterone PANC-1 S   -0.36 >10,000 >10,000 2.10 0.10 -5.39 0.25 2.56 0.67 2.84 0.68 -7.24 0.26 10000.00 6.38 30.35 

Jo
urn

al 
Pre-

pro
of



Table 2: Comparison of the different scoring systems used for selecting compound combinations and their ability to identify synergistic compound pairs. Synergy 

scores of the compound combinations to be synergistic, compared with the compounds predicted to be active as single agents are provided. AVG shows average synergy scores 

of all compounds selected in each scoring system category. TTEST compares significance of scores of predicted compounds in each scoring category vs predicted single agents. 

DIV provides ratio of synergy scores of predicted compound combinations vs single agents. Compounds that were predicted to be synergistic using the Res-score were on 

average 2.60 times more synergistic using the Lowe synergy metric (p-value=0.04), and 3.32 times more synergistic using the Bliss synergy metric (p-value=0.08). Score1 was 

also leading to 2.82 and 5.18 times higher synergies in the Lowe and Bliss synergy metrics using Combenefit software, respectively (p-values= 0.04 and 0.02). The evaluation 

of the Score2 selection was non-conclusive, as only two combinations were selected, and the resulting p-value is not significant. Hence, Score1 and Res-score are reliable 

scoring system for synergy prediction. Loewe, Bliss, ZIP and HAS synergy metrics calculated using SynergyFinder Plus tool were also compared for combinations and single 

agents.  It shows 4.4 times higher synergy for Score1 and 2.59 times higher synergy for Res-score using Loewe Synergy metric. 3.43 and 1.98 times higher synergy is observed 

using HAS for Score1 and Res-Score. The score ratios (DIV) is not provided for Bliss and ZIP as they have negative values for single agents which represents antagonism for 

single agents. As, the TTEST for SynergyFinder Plus metrics does not show significant values so it is better to rely on Combenefit scores in this case. 

 

Method Lowe Bliss Loewe Bliss ZIP HAS 

Software Combenefit SynergyFinder Plus 

 
AVG TTEST DIV AVG TTEST DIV AVG TTEST DIV AVG TTEST AVG TTEST AVG TTEST DIV 

Res-score 27.72 0.04* 2.6 10.48 0.08 3.32 7.10 0.32 2.59 0.38 0.37 0.95 0.35 7.49 0.38 1.98 

Score1 30.08 0.04* 2.82 16.34 0.02* 5.18 12.05 0.17 4.40 5.66 0.11 6.06 0.09 13.12 0.14 3.48 

Score2 10.9 0.48 1.02 3.25 0.49 1.03 2.60 0.92 0.95 -2.67 0.90 -2.16 0.96 4.12 0.81 1.09 

Selected 17.88 0.08 1.68 9.1 0.1 2.89 5.15 0.10 1.88 0.20 0.24 0.50 0.23 6.04 0.15 1.60 

Single 

agents 
10.67 

  
3.15 

  
2.74 

  
-2.99 

 
-2.27 

  
3.77 
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STAR★Methods 

Resource availablity 

Materials availability 

All unique/stable reagents generated in this study are available from the Lead Contact with a 

completed Materials Transfer Agreement. 

Key resources including details of key reagents and cell lines used are available in the Key Resources 

Table.  

Data and code availability 

 Source data and code for generating Figs 2-5 and Figs S1-16 is available in the following GitHub 

repository: https://github.com/pathwayBasedDrugRepositioning/PancreaticCancer 

 SynergyFinderPlus webtool was used for measuring synergy: https://synergyfinderplus.org/ 

 R software was used for figure generation: https://www.r-project.org/ 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Dr Yasaman KalantarMotamedi(yk313@cantab.net)  

Experimental model and subject details 

Cell culture and chemicals 

Human pancreatic cancer cells (PANC-1, MIA PaCa-2 and HPAF-II) were obtained from either the 

European Collection of Cell Cultures (PANC-1 and MIA PaCa-2) or the American Type Culture 

Collection (HPAF-II). They were authenticated by the CRUK Cambridge Institute Biorepository core 

facility, using either the Promega GenePrint10 system or the Promega PowerPlex 16HS kit, and were 
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grown in DMEM with 10% FBS (GIBCO, MA, USA). Murine pancreatic cancer cells K8484 and 

TB32048 were established from tumours in KRasG12D; p53R172H; Pdx1-Cre mice by members of 

David Tuveson’s lab at Cold Spring Harbor Laboratory(Hingorani et al., 2005; Olive et al., 2009) and 

were grown in DMEM with 5% FBS. 

All cell lines were grown up to a maximum of 20 passages and for fewer than 6 months following 

resuscitation. They were routinely verified to be mycoplasma-free by the CRUK Cambridge Institute 

Biorepository core facility using the Mycoprobe Mycoplasma Detection Kit (R&D Systems, MN, 

USA). Maprotiline, palbociclib, tacedinaline, digoxin, medroxyprogesterone, loperamide, salmeterol, 

triclosan, paclitaxel, phloretin, teniposide and racecadotril were purchased from Sigma-Aldrich; Y-134, 

RS-17053, L-168,049 and actinomycin D were ordered from Tocris; BX-795, clofarabine, serdematan, 

BMS-387032, saracatinib, TW-37 and ursolic acid were supplied by Selleckchem. In addition to the 

above listed chemicals, gemcitabine and ciclopirox (LKT), scriptaid and entinostat (Cayman), NVP-

TAE684 and semagacestat (Biovision), BRD-A68061604 (Vitas M Laboratory), thioridazine (MP 

Biomedicals) were obtained, dissolved in DMSO in aliquots of 10-30mM, kept at -20 ºC and used 

within 3 months. Final DMSO concentrations (≤0.2%) were kept constant in all experiments. 

Method details 

Cytotoxicity Assay and synergy calculation 

Drug cytotoxicity in vitro was assessed by the means of Sulforhodamine B colorimetric (SRB) 

assay.(Vichai and Kirtikara, 2006) Cells were plated in a 96 well plate and dosed with a range of 

concentrations of drugs (0.001 µM to 10 µM) and incubated for 72 h at 37˚C. Cells were then fixed (3% 

trichloroacetic acid, 90 minutes, 4˚C), washed in water and stained with a 0.057% SRB (Sigma-Aldrich, 

#230162-5G) solution in acetic acid (w/v) for 30 minutes. The plates were washed (1% acetic acid), 
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and the protein-bound dye was dissolved in a 10 mM Tris base solution (pH 10.5). Fluorescence was 

measured using the Tecan Infinite M200 plate-reader (excitation 488 nm, emission 585 nm). 50% 

Growth Inhibition (GI50) values of each drug were calculated by comparing with solvent control.  

For compound combination assays, cells were seeded for 24 hours in 96-well plates and then treated 

with a serial dilution of each agent and gemcitabine in an 8 X 8 concentration format.  

The effect of the combination was analyzed by Combenefit.(Veroli et al., 2016) The Combenefit 

software generates a set of synergy scores based on the Bliss(BLISS, 1939) and Loewe models(Veroli 

et al., 2016). The choice of synergy scores significantly influences interpretation of drug combination 

screens.(Meyer et al., 2020; Vlot et al., 2019) Similar synergy calculation methodology is used in 

authors’ previous  work.(Koh et al., 2015) 

IncuCyte time-lapse imaging 

Images of cells were acquired with the IncuCyte Live Cell Imaging microscopy (Essen Bioscience, MI, 

USA) at every three hours under cell culture conditions with 10X objective. Averaged cell confluence 

was calculated from three random fields of view per well using the IncuCyte in-built algorithm. Relative 

confluence values were obtained by normalizing each value to the time zero value in each sample.  

Clonogenic assay 

Cells were plated 24 hours prior to treatment. After 48 hours of treatment, equal numbers of viable cells 

from each sample were reseeded in fresh medium and left to grow for a week or two depending on the 

cell density. Cells were then fixed with 70% methanol and stained with 0.2% crystal violet (Sigma-

Aldrich, MO, USA). Colonies were imaged and quantified using the Gelcount (Oxford Optronix). 

Plating efficiency was calculated from the ratio of the number of colonies to the number of cells seeded. 
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The number of colonies that arose after treatment was expressed as surviving fraction. This was derived 

from the ratio of the number of colonies formed after treatment to the number of cells seeded multiplied 

by plating efficiency of the control.(Franken et al., 2006)  

Immunoblotting 

For immunoblotting, whole-cell extracts were obtained by lysis in RIPA buffer (50mM Tris pH8.0, 

2mM EDTA, 150mM sodium chloride, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) and 

resolved using the SDS-PAGE gel system (Life Technologies, MA, USA). Blots were analyzed using 

the Odyssey Infrared Imaging System (LI-COR, NE, USA). Primary antibody cleaved PARP (#5625S) 

was obtained from Cell Signaling (MA, USA), cleaved caspase 3 (ab13847) and β-actin (ab6276) were 

purchased from Abcam (Cambridge, UK) and primary antibody γH2AX from Millipore (05-636). As 

secondary antibodies IRDye800CW- and IR680CW-conjugated antibodies from LI-COR were used in 

immunoblotting. 

Acquisition, processing and analysis of live-cell time-lapse sequences 

PANC-1 FastFUCCI cells(Koh et al., 2016) were kept in a humidified chamber under cell culture 

conditions. Images were taken on five fields of view per well, every seven minutes over 72 hours, using 

the Zeiss Axio Observer system with 10X objective. An equalization of intensities over time was then 

performed to each channel using the ZEN software (Zeiss, Oberkochen, Germany).  
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Quantification and statistical analysis 

Statistical analyses 

Data from SRB assay were analyzed using the GraphPad Prism (Version 7)(GraphPad Software, n.d.) 

built-in tests or the Combenefit(Veroli et al., 2016) software. An ordinary one-way ANOVA with a 

Tukey’s multiple comparisons test was performed using GraphPad Prism version 7 for Windows 

(GraphPad Software, CA, USA, www.graphpad.com). Data represents mean ± SD of 3 replicates, * 

indicates P < 0.05 and ** indicates significance at P < 0.01 (based on the Kruskal-Wallis non-parametric 

test).  

Gene expression data retrieval and pathway signature calculation for compounds 

The compound dataset used in this project was retrieved from the LINCS database(Cheng and Li, 2016; 

Subramanian et al., 2017) (Phase I). LINCS at the time of this study contained gene expression profiles 

of a set of 20,413 compounds applied to 77 different cell lines including 59 cancer cell lines. In this 

work, the LINCS Application Processing Interface (Lincscloud.org, accessed 2015, replaced by clue.io 

today) was used to retrieve gene signatures of all compounds in the dataset, including the list of 50 most 

up- and down-regulated landmark genes among significantly differentially expressed genes in each cell 

line after each compound treatment (without taking into account the expression level). Landmarks genes 

were 978 genes profiled in L1000 platform that were sufficient to recover 82% of the information in 

the full transcriptome.(Subramanian et al., 2017) In this work, gene expression of different instances of 

the same compound on different cell lines were not aggregated together and were treated separately. 

As LINCS did not include any pancreatic cancer cell line, we used pathways instead of genes to define 

effect of compounds on the cell. From the NCBI BioSystems(Geer et al., 2010b) database (accessed in 

2015) all human biological pathways and the name of genes that belonged to those pathways were 
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downloaded. This constituted 2,010 pathways with annotated gene members in each pathway. In this 

work, for each compound instance in LINCS, the number of genes up- and down-regulated in each 

pathway were counted (separately for each direction). To normalize the score for each compound, 

20,000 random gene sets with the same length as the compound signatures (50 genes) were generated 

to constitute a background population. Next, z-scores were calculated for each pathway ‘p’ for each 

compound ‘c’ compared to the background population using the following formula: 

𝑆𝑐𝑜𝑟𝑒𝑐,𝑝 =
𝑁𝑐,𝑝 − µ𝑝

𝜎𝑝
 

Where 𝑁𝑐,𝑝 denotes number of shared genes in the compound c and pathway ‘p’, µ𝑝 and 𝜎𝑝 denote 

average and standard deviation of number of shared pathways with pathway ‘p’ and the background 

population, respectively (random gene sets).  

Gene expression data retrieval and pathway signature calculation for pancreatic cancer cell lines 

We next needed to define the gene expression differences between healthy and disease (here pancreatic 

cancer) states. For this purpose, the gene expression profile of GEO dataset GSE45765, containing the 

whole genome gene expression profile of  normal human pancreatic ductal epithelial cells specimen 

and pancreatic cancer cell lines(Gysin et al., 2012) was imported using GenePattern(Reich et al., 2006) 

GEO Importer tool. Next, untreated cancer cell lines (PANC-1 and BXPC3) were each compared with 

the normal human pancreatic ductal epithelial cells specimen and the log2 fold change was calculated 

for each gene in each cell line (PANC-1 was used for synergy prediction and testing only). The genes 

were sorted based on their log2 fold changes and the 50 most over- and underexpressed genes constituted 

the disease signature for each pancreatic cancer cell line. Next, the number of shared genes between the 

pancreatic cancer disease signature and each of the pathways in Biosystems was counted and 

enrichment scores were calculated for each pathway to generate a pathway signature for each of the 
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pancreatic cancer cell lines (per direction, analogous to the compound pathway enrichment calculation). 

The only difference was that for normalising pathway enrichment scores for the disease signature the 

random gene sets were selected from genes that were in the assay used for gene expression profiling of 

cancer cells (in this case the HG-U133A_2 Affymetrix Human Genome U133A 2.0 Array). 

This pathway enrichment analysis led to a pathway signature for each compound in the LINCS database, 

and a pathway signature for each pancreatic cancer cell line, based on the 50 most up- and 

downregulated genes, per direction, which were annotated with NCBI Biosystems pathways. 

Compound-disease matching 

Similar to the original ‘Connectivity Mapping’ approach(Lamb et al., 2006a) we were interested in 

compounds whose pathway signature was anticorrelated with the disease signature. To this end, the 

pathways with highest normalised score in the disease were identified for targeting by the compounds. 

Significantly up- or downregulated pathways (with a p-value<0.01, equivalent to a Z-score cut-offs of 

above 2.58 or under -2.58) were identified to this end. Next, the Pearson correlation of the pathway 

signature of the compounds in LINCS with the disease pathway signature was calculated, but only on 

the subset of pathways that were found to be significantly dysregulated in the diseases signature. Then, 

the compounds were rank ordered based on their anticorrelation scores. This rank ordered list of 

compounds was annotated with predicted protein targets and pathways to facilitate selection of 

potentially active compounds in a more informed manner. In this regard, a Naïve Bayes target prediction 

algorithm(Koutsoukas et al., 2013) was utilised to annotate ranked compounds with their targets, based 

on bioactivity data from CHEMBL v.17 comprising 385,126 compound-protein pairs, 1,643 distinct 

proteins and 226,791 unique compounds.  
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KEY RESOURCES TABLE 

REAGENT or RESOURSE SOURSE IDENTIFIER 

Antibodies 

cleaved PARP  Cell Signaling 5625S 

cleaved caspase 3 Abcam ab13847 

β-actin Abcam ab6276 

γH2AX Millipore 05-636 

IRDye800CW- conjugated 

antibodies 

LI-COR 

http://www.licor.com/bio/products

/reagents/irdye_secondary_antibo

dies/irdye_secondary_antibodies.j

sp 

IR680CW-conjugated antibodies LI-COR 

http://www.licor.com/bio/products

/reagents/irdye_secondary_antibo

dies/irdye_secondary_antibodies.j

sp 

Chemicals, peptides, and recombinant proteins 

maprotiline Sigma-Aldrich M9651 

palbociclib Sigma-Aldrich PZ0383 

tacedinaline Sigma-Aldrich C0621 

digoxin Sigma-Aldrich D6003 

medroxyprogesterone Sigma-Aldrich M6013 

loperamide Sigma-Aldrich L4762 

salmeterol Sigma-Aldrich PHR1947 

triclosan Sigma-Aldrich PHR1338 

paclitaxel Sigma-Aldrich T7402 
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phloretin Sigma-Aldrich P7912 

teniposide Sigma-Aldrich SML0609 

racecadotril Sigma-Aldrich SML0043 

Y-134 Tocris 2676/10 

RS-17053 Tocris 0985/10 

L-168,049 Tocris 2311/10 

actinomycin D Tocris 1229/10 

BX-795 Selleckchem S1274 

clofarabine Selleckchem S1218 

serdematan Selleckchem S1172 

BMS-387032 Selleckchem S1145 

saracatinib Selleckchem S1006 

TW-37 Selleckchem S1121 

ursolic acid Selleckchem S2370 

gemcitabine LKT G1745 

ciclopirox LKT C3208 

scriptaid Cayman 10572 

entinostat Cayman 13284 

NVP-TAE684 Biovision 1683 

semagacestat Biovision 2430 

BRD-A68061604 (STK525924) Vitas M Laboaratory STK525924 

thioridazine MP Biomedicals 15689101 

Experimental models: Cell lines 

PANC-1, MIA PaCa-2 

European Collection of Cell 

Cultures 

N/A 

HPAF-II American Type Culture Collection N/A 
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K8484 and TB32048 

David Tuveson’s lab at Cold 

Spring Harbor Laboratory 

N/A 

Software and algorithms 

GraphPad Software Prism www.graphpad.com 

SynergyFinderPlus Zheng et al. 2021 https://synergyfinderplus.org/ 

R R-Project https://www.r-project.org 
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Supplemental information titles and legends 

Figure S1: Entinostat vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP synergy 

metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental samples. 

Figure S1: Entinostat vs Gemcitabine synergy on HPAFII cells. Bliss, Loewe, HAS and ZIP synergy 

metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental samples. 

Figure S2: Entinostat vs Gemcitabine synergy on K8484 cells. Bliss, Loewe, HAS and ZIP synergy 

metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental samples. 

Figure S3: Entinostat vs Gemcitabine synergy on MIA PaCa-2 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S5: Entinostat vs Gemcitabine synergy on TB32048 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S6: BX795 vs Gemcitabine synergy on PANC1 cells. Bliss, Loewe, HAS and ZIP synergy 

metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental samples. 

Figure S4: Loperamide vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S5: Palbociclib vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S6: Racecadotril vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S7: Saracatinib vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S8: Scriptaid vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP synergy 

metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental samples. 
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Figure S9: Semagacestat vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S10: STK525924 vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S11: Thioridazine vs Gemcitabine synergy on PANC-1 cells. Bliss, Loewe, HAS and ZIP 

synergy metrics in 3D as well as bar plot are visualised. Synergy was calculated for three experimental 

samples. 

Figure S12: Synergy metrics vs Cell Sensitivity for all compound pairs on PANC-1. A) HAS and 

B) ZIP synergy metrics are depicted for all experimentally validated compound combinations. Y axis 

is the synergy metric and x axis is the combination Score sensitivity. Synergy was calculated for three 

experimental samples. 

Figure S13: Entinostat-Gemcitabine on 5 pancreatic cancer cell lines. From left to right columns: 

Cell Viability, Bliss, HAS, Loewe, ZIP Synergy metrics in 2D and Loewe Synergy metric in 3D on A) 

HPAF-II, B) K8484, C) MIA PaCa-2 D) TB32048 and E) PANC-1 cell lines are depicted. Mean of cell 

viability for three samples are presented. Synergy was calculated for three experimental samples. 

Table S1: ACP Pathways. Anti-correlated Pathways (ACP) between gemcitabine and PANC-1 cell 

line. Pathway names and BioSystems IDs are provided accompanied with z-score for gemcitabine 

instance 1 and PANC-1 cell line. 

Table S2: CP Pathways. Corelated Pathways between gemcitabine instances and PANC-1 cell line are 

listed here with Biosystems IDs. Each pathway that contributed to each scoring system is identified. 

Table S3: Compounds predicted to exhibit synergy in combination with gemcitabine with existing 

literature support (see main text for references). Scores are in the range -1 to 1 with scores close to 

-1 for single agents meaning being active as single agents and scores close to -1 for combination 

meaning the compound is predicted to be synergistic. (Single agent scores are generally lower compared 

to combination scores as single agent scores are calculated based on anticorrelation of larger number of 

pathways and scores for combination are calculated based on anticorrelations on just a few specific 

pathways that were systematically hypothesized to be related to gemcitabine resistance.)  

Table S4: Compound Signatures. Top 50 up/down regulated genes of entinostat, gemcitabine and 

trichostatin-A retrieved from LINCS database are listed here. Genes in bold are members of 

chromosome maintenance pathway that are down regulated in entinostat signature but up regulated in 

the gemcitabine signature (instance 1). 
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Highlights 
 

1- We developed a computational approach to predict synergistic compound pairs 

2- The approach uses transcriptional data and pathway information for scoring  

3- The predicted combinations with gemcitabine were validated in-vitro 

4- Predicted combinations vs single agents had 2.82-5.18 times higher synergies 
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